Faculty Opinions recommendation of Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α.

Author(s):  
Terry Davidson ◽  
Camille Sample
2001 ◽  
Vol 276 (15) ◽  
pp. 12440-12448 ◽  
Author(s):  
Kotha Subbaramaiah ◽  
Derrick T. Lin ◽  
Janice C. Hart ◽  
Andrew J. Dannenberg

We investigated whether peroxisome proliferator-activated receptor γ (PPARγ) ligands (ciglitazone, troglitazone, and 15-deoxy-Δ12,14prostaglandin J2) inhibited cyclooxygenase-2 (COX-2) induction in human epithelial cells. Ligands of PPARγ inhibited phorbol ester (phorbol 12-myristate 13-acetate, PMA)-mediated induction of COX-2 and prostaglandin E2synthesis. Nuclear run-offs revealed increased rates ofCOX-2transcription after treatment with PMA, an effect that was inhibited by PPARγ ligands. PMA-mediated induction ofCOX-2promoter activity was inhibited by PPARγ ligands; this suppressive effect was prevented by overexpressing a dominant negative form of PPARγ or a PPAR response element decoy oligonucleotide. The stimulatory effects of PMA were mediated by a cyclic AMP response element in theCOX-2promoter. Treatment with PMA increased activator protein-1 (AP-1) activity and the binding of c-Jun, c-Fos, and ATF-2 to the cyclic AMP response element, effects that were blocked by PPARγ ligands. These findings raised questions about the mechanism underlying the anti-AP-1 effect of PPARγ ligands. The induction of c-Jun by PMA was blocked by PPARγ ligands. Overexpression of either c-Jun or CREB-binding protein/p300 partially relieved the suppressive effect of PPARγ ligands. When CREB-binding protein and c-Jun were overexpressed together, the ability of PPARγ ligands to suppress PMA-mediated induction ofCOX-2promoter activity was essentially abrogated. Bisphenol A diglycidyl ether, a compound that binds to PPARγ but lacks the ability to activate transcription, also inhibited PMA-mediated induction of AP-1 activity and COX-2. Taken together, these findings are likely to be important for understanding the anti-inflammatory and anti-cancer properties of PPARγ ligands.


2005 ◽  
Vol 280 (49) ◽  
pp. 40398-40401 ◽  
Author(s):  
Junghee Lee ◽  
Chun-Hyung Kim ◽  
David K. Simon ◽  
Lyaylya R. Aminova ◽  
Alexander Y. Andreyev ◽  
...  

1990 ◽  
Vol 10 (4) ◽  
pp. 1347-1357
Author(s):  
C J Kara ◽  
H C Liou ◽  
L B Ivashkiv ◽  
L H Glimcher

The cyclic AMP response element (CRE) is found in many cellular genes regulated by cyclic AMP, and similar elements are present in the early genes of adenovirus that are activated by E1A. The transcription factor CREB has previously been shown to bind this site, and cDNAs for CREB have recently been characterized. We report here the isolation of a cDNA encoding a human DNA-binding protein that also recognizes this motif in cellular and viral promoters. This protein, HB16, displays structural similarity to CREB and to c-Jun and c-Fos, which bind the related 12-O-tetradecanoylphorbol-13-acetate response element (TRE). HB16 contains a highly basic, putative DNA-binding domain and a leucine zipper structure thought to be involved in dimerization. Deletional analysis of HB16 demonstrated that the leucine zipper is required for its interaction with DNA. In addition, HB16 could form a complex with c-Jun but not with c-Fos. Despite its structural similarity to c-Jun and c-Fos and its interaction with c-Jun, HB16 had approximately a 10-fold-lower affinity for the TRE sequence than for the CRE sequence. Although HB16 and CREB both recognized the CRE motif, an extensive binding analysis of HB16 revealed differences in the fine specificity of binding of the two proteins. HB16 mRNA was found at various levels in many human tissues but was most abundant in brain, where its expression was widespread. The existence of more than one CRE-binding protein suggests that the CRE motif could serve multiple regulatory functions.


Sign in / Sign up

Export Citation Format

Share Document