Faculty Opinions recommendation of The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans.

Author(s):  
Margaret Katz
2003 ◽  
Vol 2 (6) ◽  
pp. 1178-1186 ◽  
Author(s):  
Naoki Kato ◽  
Wilhelmina Brooks ◽  
Ana M. Calvo

ABSTRACT Secondary metabolism is commonly associated with morphological development in microorganisms, including fungi. We found that veA, a gene previously shown to control the Aspergillus nidulans sexual/asexual developmental ratio in response to light, also controls secondary metabolism. Specifically, veA regulates the expression of genes implicated in the synthesis of the mycotoxin sterigmatocystin and the antibiotic penicillin. veA is necessary for the expression of the transcription factor aflR, which activates the gene cluster that leads to the production of sterigmatocystin. veA is also necessary for penicillin production. Our results indicated that although veA represses the transcription of the isopenicillin synthetase gene ipnA, it is necessary for the expression of acvA, the key gene in the first step of penicillin biosynthesis, encoding the delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase. With respect to the mechanism of veA in directing morphological development, veA has little effect on the expression of the known sexual transcription factors nsdD and steA. However, we found that veA regulates the expression of the asexual transcription factor brlA by modulating the α/β transcript ratio that controls conidiation.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74122 ◽  
Author(s):  
Vellaisamy Ramamoorthy ◽  
Sourabh Dhingra ◽  
Alexander Kincaid ◽  
Sourabha Shantappa ◽  
Xuehuan Feng ◽  
...  

2020 ◽  
Vol 58 (7) ◽  
pp. 574-587
Author(s):  
Dong Chan Won ◽  
Yong Jin Kim ◽  
Da Hye Kim ◽  
Hee-Moon Park ◽  
Pil Jae Maeng

2021 ◽  
Vol 9 (1) ◽  
pp. 144
Author(s):  
Sung-Hun Son ◽  
Mi-Kyung Lee ◽  
Ye-Eun Son ◽  
Hee-Soo Park

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in A.nidulans conidia.


Mycologia ◽  
2020 ◽  
pp. 1-8
Author(s):  
Li Meng ◽  
Shaoyan Zhang ◽  
Bingzhi Chen ◽  
Xiaoran Bai ◽  
Yefan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document