scholarly journals Correction: Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism

PLoS Genetics ◽  
2018 ◽  
Vol 14 (8) ◽  
pp. e1007638
Author(s):  
Karl G. Thieme ◽  
Jennifer Gerke ◽  
Christoph Sasse ◽  
Oliver Valerius ◽  
Sabine Thieme ◽  
...  
Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 271
Author(s):  
Xiuna Wang ◽  
Wenjie Zha ◽  
Linlin Liang ◽  
Opemipo Esther Fasoyin ◽  
Lihan Wu ◽  
...  

Fungal secondary metabolites play important roles not only in fungal ecology but also in humans living as beneficial medicine or harmful toxins. In filamentous fungi, bZIP-type transcription factors (TFs) are associated with the proteins involved in oxidative stress response and secondary metabolism. In this study, a connection between a bZIP TF and oxidative stress induction of secondary metabolism is uncovered in an opportunistic pathogen Aspergillus flavus, which produces carcinogenic and mutagenic aflatoxins. The bZIP transcription factor AflRsmA was identified by a homology research of A. flavus genome with the bZIP protein RsmA, involved in secondary metabolites production in Aspergillus nidulans. The AflrsmA deletion strain (ΔAflrsmA) displayed less sensitivity to the oxidative reagents tert-Butyl hydroperoxide (tBOOH) in comparison with wild type (WT) and AflrsmA overexpression strain (AflrsmAOE), while AflrsmAOE strain increased sensitivity to the oxidative reagents menadione sodium bisulfite (MSB) compared to WT and ΔAflrsmA strains. Without oxidative treatment, aflatoxin B1 (AFB1) production of ΔAflrsmA strains was consistent with that of WT, but AflrsmAOE strain produced more AFB1 than WT; tBOOH and MSB treatment decreased AFB1 production of ΔAflrsmA compared to WT. Besides, relative to WT, ΔAflrsmA strain decreased sclerotia, while AflrsmAOE strain increased sclerotia. The decrease of AFB1 by ΔAflrsmA but increase of AFB1 by AflrsmAOE was on corn. Our results suggest that AFB1 biosynthesis is regulated by AflRsmA by oxidative stress pathways and provide insights into a possible function of AflRsmA in mediating AFB1 biosynthesis response host defense in pathogen A. flavus.


2021 ◽  
Author(s):  
Anindita Dutta ◽  
Apurba Das ◽  
Deep Bisht ◽  
Vijendra Arya ◽  
Rohini Muthuswami

Cells respond to oxidative stress by elevating the levels of antioxidants, signaling, and transcriptional regulation often implemented by chromatin remodeling proteins.  The study presented in this paper shows that the expression of PICH, an ATP-dependent chromatin remodeler, is upregulated during oxidative stress in HeLa cells. We also show that PICH regulates the expression of Nrf2, a transcription factor regulating antioxidant response, both in the absence and presence of oxidative stress. In turn, Nrf2 regulates the expression of PICH in the presence of oxidative stress. Both PICH and Nrf2 together regulate the expression of antioxidant genes and this transcriptional regulation is dependent on the ATPase activity of PICH. In addition, H3K27ac modification also plays a role in activating transcription in the presence of oxidative stress. Co-immunoprecipitation experiments show that PICH and Nrf2 interact with H3K27ac in the presence of oxidative stress. Mechanistically, PICH recognizes ARE sequences present on its target genes and introduces a conformational change to the DNA sequences leading us to hypothesize that PICH regulates transcription by remodeling DNA. PICH ablation leads to reduced expression of Nrf2 and impaired antioxidant response leading to increased ROS content, thus, showing PICH is essential for the cell to respond to oxidative stress.


2016 ◽  
Vol 180 ◽  
pp. 141-154 ◽  
Author(s):  
Larissa M. Williams ◽  
Briony A. Lago ◽  
Andrew G. McArthur ◽  
Amogelang R. Raphenya ◽  
Nicholas Pray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document