Faculty Opinions recommendation of Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules.

Author(s):  
Valeri Vasioukhin
2015 ◽  
Vol 112 (6) ◽  
pp. 1785-1790 ◽  
Author(s):  
Chih-Chao Yang ◽  
Hillary K. Graves ◽  
Ivan M. Moya ◽  
Chunyao Tao ◽  
Fisun Hamaratoglu ◽  
...  

Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical–basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non–cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non–cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.


2011 ◽  
Vol 436 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Alice Genevet ◽  
Nicolas Tapon

The establishment and maintenance of apico–basal cell polarity is a pre-requisite for the formation of a functioning epithelial tissue. Many lines of evidence suggest that cell polarity perturbations favour cancer formation, even though the mechanistic basis for this link remains unclear. Studies in Drosophila have uncovered complex interactions between the conserved Hpo (Hippo) tumour suppressor pathway and apico–basal polarity determinants. The Hpo pathway is a crucial growth regulatory network whose inactivation in Drosophila epithelial tissues induces massive overproliferation. Its core consists of a phosphorylation cascade (comprising the kinases Hpo and Warts) that mediates the inactivation of the pro-growth transcriptional co-activator Yki [Yorkie; YAP (Yes-associated protein) in mammals]. Several apically located proteins, such as Merlin, Expanded or Kibra, have been identified as upstream regulators of the Hpo pathway, leading to the notion that an apical multi-molecular complex modulates core kinase activity and promotes Yki/YAP inactivation. In the present review, we explore the links between apico–basal polarity and Hpo signalling. We focus on the regulation of Yki/YAP by apical proteins, but also on how the Hpo pathway might in turn influence apical domain size as part of a regulatory feedback loop.


2021 ◽  
Vol 134 (6) ◽  
pp. jcs247866
Author(s):  
Srividya Venkatramanan ◽  
Consuelo Ibar ◽  
Kenneth D. Irvine

ABSTRACTHippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown, we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for the recruitment of vinculin and VASP to adherens junctions. Knockdown of TRIP6 or vinculin, but not of LIMD1, also influences the localization of myosin and F-actin. In TRIP6 knockdown cells, actin stress fibers are lost apically but increased basally, and there is a corresponding increase in the recruitment of vinculin and VASP to basal focal adhesions. Our observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.


2020 ◽  
Author(s):  
Srividya Venkatramanan ◽  
Consuelo Ibar ◽  
Kenneth D. Irvine

ABSTRACTHippo signaling mediates influences of cytoskeletal tension on organ growth. TRIP6 and LIMD1 have each been identified as being required for tension-dependent inhibition of the Hippo pathway LATS kinases and their recruitment to adherens junctions, but the relationship between TRIP6 and LIMD1 was unknown. Using siRNA-mediated gene knockdown we show that TRIP6 is required for LIMD1 localization to adherens junctions, whereas LIMD1 is not required for TRIP6 localization. TRIP6, but not LIMD1, is also required for recruitment of Vinculin and VASP to adherens junctions. Knockdown of TRIP6 or Vinculin, but not of LIMD1, also influences the localization of phosphorylated myosin light chain and F-actin. In TRIP6 knockdown cells actin stress fibers are lost apically but increased basally, and there is a corresponding increase in recruitment of Vinculin and VASP to basal focal adhesions. These observations identify a role for TRIP6 in organizing F-actin and maintaining tension at adherens junctions that could account for its influence on LIMD1 and LATS. They also suggest that focal adhesions and adherens junctions compete for key proteins needed to maintain attachments to contractile F-actin.


Sign in / Sign up

Export Citation Format

Share Document