Faculty Opinions recommendation of Characterization of a novel oligomeric SGNH-arylesterase from Sinorhizobium meliloti 1021.

Author(s):  
Florence Marlow
2000 ◽  
Vol 182 (13) ◽  
pp. 3717-3725 ◽  
Author(s):  
Eric Boncompagni ◽  
Laurence Dupont ◽  
Tam Mignot ◽  
Magne Østeräs ◽  
Annie Lambert ◽  
...  

ABSTRACT The symbiotic soil bacterium Sinorhizobium melilotiuses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli(ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed inhut mutants (hutX and hutH2). Expression analysis of the hut operon determined using ahutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.


2007 ◽  
Vol 190 (4) ◽  
pp. 1237-1246 ◽  
Author(s):  
Allyson M. MacLean ◽  
Michelle I. Anstey ◽  
Turlough M. Finan

ABSTRACT LysR-type transcriptional regulators represent one of the largest groups of prokaryotic regulators described to date. In the gram-negative legume endosymbiont Sinorhizobium meliloti, enzymes involved in the protocatechuate branch of the β-ketoadipate pathway are encoded within the pcaDCHGB operon, which is subject to regulation by the LysR-type protein PcaQ. In this work, purified PcaQ was shown to bind strongly (equilibrium dissociation constant, 0.54 nM) to a region at positions −78 to −45 upstream of the pcaD transcriptional start site. Within this region, we defined a PcaQ binding site with dyad symmetry that is required for regulation of pcaD expression in vivo and for binding of PcaQ in vitro. We also demonstrated that PcaQ participates in negative autoregulation by monitoring expression of pcaQ via a transcriptional fusion to lacZ. Although pcaQ homologues are present in many α-proteobacteria, this work describes the first reported purification of this regulator, as well as characterization of its binding site, which is conserved in Agrobacterium tumefaciens, Rhizobium leguminosarum, Rhizobium etli, and Mesorhizobium loti.


2001 ◽  
Vol 14 (6) ◽  
pp. 811-815 ◽  
Author(s):  
María José Soto ◽  
Juan Sanjuan ◽  
José Olivares

Nitrogen-fixing Sinorhizobium meliloti cells depend upon dicarboxylic acids as carbon and energy sources. The metabolism of these intermediate compounds of the tri-chloroacetic acid cycle is dependent upon the availability of acetyl-coenzyme A (CoA). In bacteroids, the combined activities of malic enzymes and pyruvate dehydrogenase (PDH) have been proposed to be responsible for the anaplerotic synthesis of acetyl-CoA. We obtained a S. meliloti mutant strain, PD3, in which a Tn5 insertion led to a significant decrease in the overall PDH activity. The genetic characterization of this mutant revealed that the transposon is located at the 3′ end of a gene (ada) encoding a putative arylesterase. The mutant PD3 is deficient in nitrogen fixation, which strengthens the physiological importance of PDH activity in the symbiosis of S. meliloti with alfalfa plants.


2016 ◽  
Vol 92 ◽  
pp. 138-147 ◽  
Author(s):  
Anna Pawlik ◽  
Magdalena Wójcik ◽  
Karol Rułka ◽  
Karolina Motyl-Gorzel ◽  
Monika Osińska-Jaroszuk ◽  
...  

2003 ◽  
Vol 133 (4) ◽  
pp. 1893-1910 ◽  
Author(s):  
Maria-Téresa Navarro-Gochicoa ◽  
Sylvie Camut ◽  
Antonius C.J. Timmers ◽  
Andreas Niebel ◽  
Christine Hervé ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1708-1718 ◽  
Author(s):  
Maud Flechard ◽  
Catherine Fontenelle ◽  
Carlos Blanco ◽  
Renan Goude ◽  
Gwennola Ermel ◽  
...  

Adaptation to osmotic stress can be achieved by the accumulation of compatible solutes that aid in turgor maintenance and macromolecule stabilization. The genetic regulation of solute accumulation is poorly understood, and has been described well at the molecular level only in enterobacteria. In this study, we show the importance of the alternative sigma factor RpoE2 in Sinorhizobium meliloti osmoadaptation. Construction and characterization of an S. meliloti rpoE2 mutant revealed compromised growth in hyperosmotic media. This defect was due to the lack of trehalose, a minor carbohydrate osmolyte normally produced in the initial stages of growth and in stationary phase. We demonstrate here that all three trehalose synthesis pathways are RpoE2 dependent, but only the OtsA pathway is important for osmoinducible trehalose synthesis. Furthermore, we confirm that the absence of RpoE2-dependent induction of otsA is the cause of the osmotic phenotype of the rpoE2 mutant. In conclusion, we have highlighted that, despite its low level, trehalose is a crucial compatible solute in S. meliloti, and the OtsA pathway induced by RpoE2 is needed for its accumulation under hyperosmotic conditions.


2007 ◽  
Vol 20 (2) ◽  
pp. 138-145 ◽  
Author(s):  
M. F. Del Papa ◽  
M. Pistorio ◽  
W. O. Draghi ◽  
M. J. Lozano ◽  
M. A. Giusti ◽  
...  

Nodulation of Medicago sativa (alfalfa) is known to be restricted to Sinorhizobium meliloti and a few other rhizobia that include the poorly characterized isolates related to Rhizobium sp. strain Or191. Distinctive features of the symbiosis between alfalfa and S. meliloti are the marked specificity from the plant to the bacteria and the strict requirement for the presence of sulfated lipochitooligosac-charides (Nod factors [NFs]) at its reducing end. Here, we present evidence of the presence of a functional nodH-encoded NF sulfotransferase in the Or191-like rhizobia. The nodH gene, present in single copy, maps to a high molecular weight megaplasmid. As in S. meliloti, a nodF homolog was identified immediately upstream of nodH that was transcribed in the opposite direction (local synteny). This novel nodH ortholog was cloned and shown to restore both NF sulfation and the Nif+Fix+ phenotypes when introduced into an S. meliloti nodH mutant. Unexpectedly, however, nodH disruption in the Or191-like bacteria did not abolish their ability to nodulate alfalfa, resulting instead in a severely delayed nodulation. In agreement with evidence from other authors, the nodH sequence analysis strongly supports the idea that the Or191-like rhizobia most likely represent a genetic mosaic resulting from the horizontal transfer of symbiotic genes from a sinorhizobial megaplas-mid to a not yet clearly identified ancestor.


FEBS Letters ◽  
2016 ◽  
Vol 590 (8) ◽  
pp. 1242-1252 ◽  
Author(s):  
Changsuk Oh ◽  
Bum Han Ryu ◽  
Deu Rae An ◽  
Duy Duc Nguyen ◽  
Wanki Yoo ◽  
...  

2013 ◽  
Vol 195 (16) ◽  
pp. 3714-3723 ◽  
Author(s):  
M. C. Peck ◽  
R. F. Fisher ◽  
R. Bliss ◽  
S. R. Long

Sign in / Sign up

Export Citation Format

Share Document