Faculty Opinions recommendation of TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins.

Author(s):  
Michael B Yaffe
Cell ◽  
2016 ◽  
Vol 165 (3) ◽  
pp. 742-753 ◽  
Author(s):  
Aoife C. McMahon ◽  
Reazur Rahman ◽  
Hua Jin ◽  
James L. Shen ◽  
Allegra Fieldsend ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 19 ◽  
Author(s):  
Tyler Weirick ◽  
Giuseppe Militello ◽  
Mohammed Rabiul Hosen ◽  
David John ◽  
Joseph B. Moore ◽  
...  

Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control—suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP–RNA interactions—a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.


2021 ◽  
Author(s):  
Wessel van Leeuwen ◽  
Michael VanInsberghe ◽  
Nico Battich ◽  
Fredrik Salmen ◽  
Alexander van Oudenaarden ◽  
...  

Stress granules are phase separated assemblies formed around mRNAs whose identities remain elusive. The techniques available to identify the RNA content of stress granules rely on their physical purification, and are therefore not suitable for single cells and tissues displaying cell heterogeneity. Here, we adapted TRIBE (Target of RNA-binding proteins Identified by Editing) to detect stress granule RNAs by fusing a stress granule RNA-binding protein (FMR1) to the catalytic domain of an RNA-editing enzyme (ADAR). RNAs colocalized with this fusion are edited, producing mutations that are detectable by sequencing. We first optimized the expression of this fusion protein so that RNA editing preferentially occurs in stress granules. We then show that this purification-free method can reliably identify stress granule RNAs in bulk and single S2 cells, and in Drosophila tissues, such as 398 neuronal stress granule mRNAs encoding ATP binding, cell cycle and transcription factors. This new method opens the possibility to identify the RNA content of stress granules as well other RNA based assemblies in single cells derived from tissues.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sameer Dixit ◽  
Michaela Müller-McNicoll ◽  
Vojtěch David ◽  
Kathi Zarnack ◽  
Jernej Ule ◽  
...  

ABSTRACT A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei . Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Giovanni Quinones-Valdez ◽  
Stephen S. Tran ◽  
Hyun-Ik Jun ◽  
Jae Hoon Bahn ◽  
Ei-Wen Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document