Controlling the Editor: The Many Roles of RNA-Binding Proteins in Regulating A-to-I RNA Editing

Author(s):  
Michael C. Washburn ◽  
Heather A. Hundley
Author(s):  
Nicole J. Curtis ◽  
Constance J. Jeffery

RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme–RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme–RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme–RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme–RNA interactions in connecting intermediary metabolism and gene expression.


Cell ◽  
2016 ◽  
Vol 165 (3) ◽  
pp. 742-753 ◽  
Author(s):  
Aoife C. McMahon ◽  
Reazur Rahman ◽  
Hua Jin ◽  
James L. Shen ◽  
Allegra Fieldsend ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sameer Dixit ◽  
Michaela Müller-McNicoll ◽  
Vojtěch David ◽  
Kathi Zarnack ◽  
Jernej Ule ◽  
...  

ABSTRACT A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei . Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.


2019 ◽  
Vol 8 (4) ◽  
pp. 19 ◽  
Author(s):  
Tyler Weirick ◽  
Giuseppe Militello ◽  
Mohammed Rabiul Hosen ◽  
David John ◽  
Joseph B. Moore ◽  
...  

Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control—suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP–RNA interactions—a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Giovanni Quinones-Valdez ◽  
Stephen S. Tran ◽  
Hyun-Ik Jun ◽  
Jae Hoon Bahn ◽  
Ei-Wen Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document