Faculty Opinions recommendation of Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence.

Author(s):  
Timothy Cover
2017 ◽  
Vol 21 (3) ◽  
pp. 376-389 ◽  
Author(s):  
Jeanna A. Bugaytsova ◽  
Oscar Björnham ◽  
Yevgen A. Chernov ◽  
Pär Gideonsson ◽  
Sara Henriksson ◽  
...  

1994 ◽  
Vol 179 (5) ◽  
pp. 1653-1658 ◽  
Author(s):  
J L Telford ◽  
P Ghiara ◽  
M Dell'Orco ◽  
M Comanducci ◽  
D Burroni ◽  
...  

The gram negative, microaerophilic bacterium Helicobacter pylori colonizes the human gastric mucosa and establishes a chronic infection that is tightly associated with atrophic gastritis, peptic ulcer, and gastric carcinoma. Cloning of the H. pylori cytotoxin gene shows that the protein is synthesized as a 140-kD precursor that is processed to a 94-kD fully active toxin. Oral administration to mice of the purified 94-kD protein caused ulceration and gastric lesions that bear some similarities to the pathology observed in humans. The cloning of the cytotoxin gene and the development of a mouse model of human gastric disease will provide the basis for the understanding of H. pylori pathogenesis and the development of therapeutics and vaccines.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Sandra Nell ◽  
Lynn Kennemann ◽  
Sandra Schwarz ◽  
Christine Josenhans ◽  
Sebastian Suerbaum

ABSTRACTHelicobacter pyloriundergoes rapid microevolution during chronic infection, but very little is known about how this affects host interaction factors. The best-studied adhesin ofH. pyloriis BabA, which mediates binding to the blood group antigen Lewis b [Le(b)]. To study the dynamics of Le(b) adherence during human infection, we analyzed pairedH. pyloriisolates obtained sequentially from chronically infected individuals. A complete loss or significant reduction of Le(b) binding was observed in strains from 5 out of 23 individuals, indicating that the Le(b) binding phenotype is quite stable during chronic human infection. Sequence comparisons ofbabAidentified differences due to mutation and/or recombination in 12 out of 16 strain pairs analyzed. Most amino acid changes were found in the putative N-terminal extracellular adhesion domain. One strain pair that had changed from a Le(b) binding to a nonbinding phenotype was used to study the role of distinct sequence changes in Le(b) binding. By transformations of the nonbinding strain with ababAgene amplified from the binding strain,H. pyloristrains with mosaicbabAgenes were generated. Recombinants were enriched for a gain of Le(b) binding by biopanning or for BabA expression on the bacterial surface by pulldown assay. With this approach, we identified several amino acid residues affecting the strength of Le(b) binding. Additionally, the data showed that the C terminus of BabA, which is predicted to encode an outer membrane β-barrel domain, plays an essential role in the biogenesis of this protein.IMPORTANCEHelicobacter pyloricauses a chronic infection of the human stomach that can lead to ulcers and cancer. The bacterium can bind to gastric epithelial cells with specialized outer membrane proteins. The best-studied protein is the BabA adhesin which binds to the Lewis b blood group antigen. SinceH. pyloriis a bacterium with very high genetic variability, we asked whetherbabAevolves during chronic infection and how mutations or recombination inbabAaffect binding. We found that BabA-mediated adherence was stable in most individuals but observed a complete loss of binding or reduced binding in 22% of individuals. One strain pair in which binding was lost was used to generatebabAsequences that were mosaics of a functional allele and a nonfunctional allele, and the mosaic sequences were used to identify amino acids critically involved in binding of BabA to Lewis b.


2013 ◽  
Vol 32 (7) ◽  
pp. 969-969 ◽  
Author(s):  
S. Alaoui Boukhris ◽  
D.-a. Benajah ◽  
K. Rhazi ◽  
S. A. Ibrahimi ◽  
C. Nejjari ◽  
...  

2016 ◽  
Vol 29 (7-8) ◽  
pp. 476 ◽  
Author(s):  
Elisabete Coelho ◽  
Ana Magalhães ◽  
Mário Dinis-Ribeiro ◽  
Celso A. Reis

Introduction: Helicobacter pylori infection is very prevalent worldwide and is associated with the progression of the gastriccarcinogenesis cascade, being one of the main risk factors for the development of gastric carcinoma. Several factors are determinant for the infection and for the development of gastric disease, including environmental factors, host genetic factors and virulence factors of the bacteria.Material and Methods: In this review, we present an overview of the current knowledge on the determinants of the infection and on the recently described molecular mechanisms of Helicobacter pylori adhesion to the gastric mucosa, as well as its possible future therapeutic application.Results: The adhesion of Helicobacter pylori to the gastric epithelium is critical for gastric pathogenesis, allowing bacterial access to nutrients and the action of bacterial virulence factors, promoting recurrence of the infection and the progression of the gastric carcinogenesis pathway.Discussion: Eradication of Helicobacter pylori infection is the best preventive strategy available against gastric cancer, mainly if it is achieved before the development of pre-neoplastic lesions. The increase in antibiotics resistance, together with the eradication failures in some patients, has promoted the development of alternative treatments.Conclusion: The new therapeutic strategies, focused on the molecular mechanism of Helicobacter pylori adhesion, are very promising; however, future studies are needed to evaluate its in vivo efficiency and toxicity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pia Palamides ◽  
Tolulope Jolaiya ◽  
Ayodeji Idowu ◽  
Eva Loell ◽  
Charles Onyekwere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document