scholarly journals Faculty Opinions recommendation of Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury.

Author(s):  
Phillip G Popovich
Keyword(s):  
Cell Reports ◽  
2017 ◽  
Vol 18 (11) ◽  
pp. 2687-2701 ◽  
Author(s):  
Kathren L. Fink ◽  
Francesc López-Giráldez ◽  
In-Jung Kim ◽  
Stephen M. Strittmatter ◽  
William B.J. Cafferty
Keyword(s):  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Zimei Wang ◽  
Vatsal Mehra ◽  
Matthew T. Simpson ◽  
Brian Maunze ◽  
Advaita Chakraborty ◽  
...  

Cell Reports ◽  
2020 ◽  
Vol 32 (3) ◽  
pp. 107907 ◽  
Author(s):  
Telma E. Santos ◽  
Barbara Schaffran ◽  
Nicolas Broguière ◽  
Liane Meyn ◽  
Marcy Zenobi-Wong ◽  
...  

2021 ◽  
Author(s):  
Sierra D. Kauer ◽  
Kathren L. Fink ◽  
Elizabeth H.F. Li ◽  
Brian P. Evans ◽  
Noa Golan ◽  
...  

ABSTRACTFailure of CNS neurons to mount a significant intrinsic growth response after trauma results in chronic functional deficits after spinal cord injury. Approaches to identify novel axon growth activators include transcriptional and repressor screening of embryonic cortical and retinal ganglion neurons in vitro. These high throughput approaches have identified several candidates; however, their inability to comprehensively model the adult CNS has resulted in their exploitation in vivo failing to stimulate significant anatomical and functional gains. To identify novel cell autonomous axon growth activators while maintaining CNS complexity, we screened intact adult corticospinal neurons (CSNs) undergoing functional plasticity after unilateral pyramidotomy. RNA-seq of intact sprouting corticospinal tract (CST) axons showed an enrichment of genes in the 3-phosphoinositide degradation pathways, including six 5-phosphatases. We explored whether Inositol Polyphosphate-5-phosphatase K (Inpp5k) could enhance CST axon growth in clinical models of CNS trauma. Overexpression of Inpp5k in intact adult CSNs enhanced sprouting of intact CST terminals into the denervated cervical cord after pyramidotomy and cortical stroke lesion. Inpp5k overexpression also stimulated sprouting of CST axons in the cervical cord after acute and chronic severe thoracic spinal contusion. We show that Inpp5k stimulates axon growth by elevating the density of active cofilin in the cytosol of labile growth cones, thus stimulating actin polymerization and enhancing microtubule protrusion into distal filopodia. This study identifies Inpp5k as a novel CST growth activator and underscores the veracity of using in vivo transcriptional screening to identify the next generation of cell autonomous factors capable of repairing the damaged CNS.SIGNIFICANCE STATEMENTNeurological recovery is limited after spinal cord injury as CNS neurons are incapable of self-repair post trauma. In vitro screening strategies exploit the intrinsically high growth capacity of embryonic CNS neurons to identify novel axon growth activators. While promising candidates have been shown to stimulate axon growth in vivo, concomitant functional recovery remains incomplete. Using transcriptional profiling of intact adult corticospinal tract neurons undergoing functional plasticity, we identified Inpp5k as a novel axon growth activator capable of stimulating CST axon growth after pyramidotomy, stroke and acute and chronic contusion injuries. These data support using in vivo screening approaches to identify novel axon growth activators.


Author(s):  
E. B. Masurovsky ◽  
H. H. Benitez ◽  
M. R. Murray

Recent light- and electron microscope studies concerned with the effects of D2O on the development of chick sympathetic ganglia in long-term, organized culture revealed the presence of rod-like fibrillar formations, and associated granulofibrillar bodies, in the nuclei of control and deuterated neurons. Similar fibrillar formations have been reported in the nuclei of certain mammalian CNS neurons; however, related granulofibrillar bodies have not been previously described. Both kinds of intranuclear structures are observed in cultures fixed either in veronal acetate-buffered 2%OsO4 (pH 7. 4), or in 3.5% glutaraldehyde followed by post-osmication. Thin sections from such Epon-embedded cultures were stained with ethanolic uranyl acetate and basic lead citrate for viewing in the electron microscope.


2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Sign in / Sign up

Export Citation Format

Share Document