Faculty Opinions recommendation of Rho GTPases regulate axon growth through convergent and divergent signaling pathways.

Author(s):  
Manzoor Bhat
2019 ◽  
Vol 25 (28) ◽  
pp. 3057-3073 ◽  
Author(s):  
Kobra B. Juybari ◽  
Azam Hosseinzadeh ◽  
Habib Ghaznavi ◽  
Mahboobeh Kamali ◽  
Ahad Sedaghat ◽  
...  

Optic neuropathies refer to the dysfunction or degeneration of optic nerve fibers caused by any reasons including ischemia, inflammation, trauma, tumor, mitochondrial dysfunction, toxins, nutritional deficiency, inheritance, etc. Post-mitotic CNS neurons, including retinal ganglion cells (RGCs) intrinsically have a limited capacity for axon growth after either trauma or disease, leading to irreversible vision loss. In recent years, an increasing number of laboratory evidence has evaluated optic nerve injuries, focusing on molecular signaling pathways involved in RGC death. Trophic factor deprivation (TFD), inflammation, oxidative stress, mitochondrial dysfunction, glutamate-induced excitotoxicity, ischemia, hypoxia, etc. have been recognized as important molecular mechanisms leading to RGC apoptosis. Understanding these obstacles provides a better view to find out new strategies against retinal cell damage. Melatonin, as a wide-spectrum antioxidant and powerful freeradical scavenger, has the ability to protect RGCs or other cells against a variety of deleterious conditions such as oxidative/nitrosative stress, hypoxia/ischemia, inflammatory processes, and apoptosis. In this review, we primarily highlight the molecular regenerative and degenerative mechanisms involved in RGC survival/death and then summarize the possible protective effects of melatonin in the process of RGC death in some ocular diseases including optic neuropathies. Based on the information provided in this review, melatonin may act as a promising agent to reduce RGC death in various retinal pathologic conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Haoran Dai ◽  
Qingquan Liu ◽  
Baoli Liu

Diabetic nephropathy (DN) together with glomerular hyperfiltration has been implicated in the development of diabetic microangiopathy in the initial stage of diabetic diseases. Increased amounts of urinary protein in DN may be associated with functional and morphological alterations of podocyte, mainly including podocyte hypertrophy, epithelial-mesenchymal transdifferentiation (EMT), podocyte detachment, and podocyte apoptosis. Accumulating studies have revealed that disruption in multiple renal signaling pathways had been critical in the progression of these pathological damages, such as adenosine monophosphate-activated kinase signaling pathways (AMPK), wnt/β-catenin signaling pathways, endoplasmic reticulum stress-related signaling pathways, mammalian target of rapamycin (mTOR)/autophagy pathway, and Rho GTPases. In this review, we highlight new molecular insights underlying podocyte injury in the progression of DN, which offer new therapeutic targets to develop important renoprotective treatments for DN over the next decade.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1292 ◽  
Author(s):  
Pavol Zubor ◽  
Zuzana Dankova ◽  
Zuzana Kolkova ◽  
Veronika Holubekova ◽  
Dusan Brany ◽  
...  

Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.


Development ◽  
2001 ◽  
Vol 128 (7) ◽  
pp. 1175-1182 ◽  
Author(s):  
A.J. Udvadia ◽  
R.W. Koster ◽  
J.H. Skene

A pivotal event in neural development is the point at which differentiating neurons become competent to extend long axons. Initiation of axon growth is equally critical for regeneration. Yet we have a limited understanding of the signaling pathways that regulate the capacity for axon growth during either development or regeneration. Expression of a number of genes encoding growth associated proteins (GAPs) accompanies both developmental and regenerative axon growth and has led to the suggestion that the same signaling pathways regulate both modes of axon growth. We have tested this possibility by asking whether a promoter fragment from a well characterized GAP gene, GAP-43, is sufficient to activate expression in both developing and regenerating neurons. We generated stable lines of transgenic zebrafish that express green fluorescent protein (GFP) under regulation of a 1 kb fragment of the rat GAP-43 gene, a fragment that contains a number of evolutionarily conserved elements. Analysis of GFP expression in these lines confirms that the rat 1 kb region can direct growth-associated expression of the transgene in differentiating neurons that extend long axons. Furthermore, this region supports developmental down-regulation of transgene expression which, like the endogenous gene, coincides with neuronal maturation. Strikingly, these same sequences are insufficient for directing expression in regenerating neurons. This finding suggests that signaling pathways regulating axon growth during development and regeneration are not the same. While these results do not exclude the possibility that pathways involved in developmental axon growth are also active in regenerative growth, they do indicate that signaling pathway(s) controlling activation of the GAP-43 gene after CNS injury differ in at least one key component from the signals controlling essential features of developmental axon growth.


Sign in / Sign up

Export Citation Format

Share Document