scholarly journals Faculty Opinions recommendation of Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice.

Author(s):  
Heinz Feldmann
2005 ◽  
Vol 78 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Ida Andersson ◽  
Åke Lundkvist ◽  
Otto Haller ◽  
Ali Mirazimi

2010 ◽  
Vol 91 (6) ◽  
pp. 1473-1477 ◽  
Author(s):  
S. Bereczky ◽  
G. Lindegren ◽  
H. Karlberg ◽  
S. Akerstrom ◽  
J. Klingstrom ◽  
...  

2012 ◽  
Vol 93 (3) ◽  
pp. 560-564 ◽  
Author(s):  
Stuart D. Dowall ◽  
Stephen Findlay-Wilson ◽  
Emma Rayner ◽  
Geoff Pearson ◽  
Janice Pickersgill ◽  
...  

Hazara virus (HAZV) is closely related to the Crimean–Congo hemorrhagic fever virus (CCHFV). HAZV has not been reported to cause human disease; work with infectious material can be carried out at containment level (CL)-2. By contrast, CCHFV causes a haemorrhagic fever in humans and requires CL-4 facilities. A disease model of HAZV infection in mice deficient in the type I interferon receptor is reported in this study. Dose–response effects were seen with higher doses, resulting in a shorter time to death and earlier detection of viral loads in organs. The lowest dose of 10 p.f.u. was still lethal in over 50 % of the mice. Histopathological findings were identified in the liver, spleen and lymph nodes, with changes similar to a recent mouse model of CCHFV infection. The findings demonstrate that inoculation of mice with HAZV may act as a useful surrogate model for the testing of antiviral agents against CCHFV.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw9535 ◽  
Author(s):  
Joseph W. Golden ◽  
Charles J. Shoemaker ◽  
Michael E. Lindquist ◽  
Xiankun Zeng ◽  
Sharon P. Daye ◽  
...  

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. Limited evidence suggests that antibodies can protect humans against lethal CCHFV disease but the protective efficacy of antibodies has never been evaluated in adult animal models. Here, we used adult mice to investigate the protection provided against CCHFV infection by glycoprotein-targeting neutralizing and non-neutralizing monoclonal antibodies (mAbs). We identified a single non-neutralizing antibody (mAb-13G8) that protected adult type I interferon–deficient mice >90% when treatment was initiated before virus exposure and >60% when administered after virus exposure. Neutralizing antibodies known to protect neonatal mice from lethal CCHFV infection failed to confer protection regardless of immunoglobulin G subclass. The target of mAb-13G8 was identified as GP38, one of multiple proteolytically cleaved glycoproteins derived from the CCHFV glycoprotein precursor polyprotein. This study reveals GP38 as an important antibody target for limiting CCHFV pathogenesis and lays the foundation to develop immunotherapeutics against CCHFV in humans.


2015 ◽  
Vol 89 (20) ◽  
pp. 10219-10229 ◽  
Author(s):  
Jessica R. Spengler ◽  
Jenish R. Patel ◽  
Ayan K. Chakrabarti ◽  
Marko Zivcec ◽  
Adolfo García-Sastre ◽  
...  

ABSTRACTIn the cytoplasm, the retinoic acid-inducible gene I (RIG-I) senses the RNA genomes of several RNA viruses. RIG-I binds to viral RNA, eliciting an antiviral response via the cellular adaptor MAVS. Crimean-Congo hemorrhagic fever virus (CCHFV), a negative-sense RNA virus with a 5′-monophosphorylated genome, is a highly pathogenic zoonotic agent with significant public health implications. We found that, during CCHFV infection, RIG-I mediated a type I interferon (IFN) response via MAVS. Interfering with RIG-I signaling reduced IFN production and IFN-stimulated gene expression and increased viral replication. Immunostimulatory RNA was isolated from CCHFV-infected cells and from virion preparations, and RIG-I coimmunoprecipitation of infected cell lysates isolated immunostimulatory CCHFV RNA. This report serves as the first description of a pattern recognition receptor for CCHFV and highlights a critical signaling pathway in the antiviral response to CCHFV.IMPORTANCECCHFV is a tick-borne virus with a significant public health impact. In order for cells to respond to virus infection, they must recognize the virus as foreign and initiate antiviral signaling. To date, the receptors involved in immune recognition of CCHFV are not known. Here, we investigate and identify RIG-I as a receptor involved in initiating an antiviral response to CCHFV. This receptor initially was not expected to play a role in CCHFV recognition because of characteristics of the viral genome. These findings are important in understanding the antiviral response to CCHFV and support continued investigation into the spectrum of potential viruses recognized by RIG-I.


2018 ◽  
Vol 92 (21) ◽  
Author(s):  
Michael E. Lindquist ◽  
Xiankun Zeng ◽  
Louis A. Altamura ◽  
Sharon P. Daye ◽  
Korey L. Delp ◽  
...  

ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage is poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon (IFN-I) signaling due to either STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h postexposure to CCHFV, mice developed severe disease with greater than 95% mortality by 6 days postexposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days postexposure and was characterized by hepatocyte necrosis and the loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting that cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA, while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of tumor necrosis factor superfamily members occurred by day 4 postexposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice. IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa, and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small-animal systems. The only small-animal model in which CCHFV consistently produces severe liver damage is mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found that liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a nearly complete loss of Kupffer cells. Our model system provides insight into both the molecular and the cellular features of CCHFV hepatic injury.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
David W Hawman ◽  
Kimberly Meade-White ◽  
Shanna Leventhal ◽  
Friederike Feldmann ◽  
Atsushi Okumura ◽  
...  

Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. CCHF is caused by infection with the Crimean-Congo hemorrhagic fever virus (CCHFV) and case fatality rates can be as high as 30%. Despite causing severe disease in humans, our understanding of the host and viral determinants of CCHFV pathogenesis are limited. A major limitation in the investigation of CCHF has been the lack of suitable small animal models. Wild-type mice are resistant to clinical isolates of CCHFV and consequently, mice must be deficient in type I interferon responses to study the more severe aspects of CCHFV. We report here a mouse-adapted variant of CCHFV that recapitulates in adult, immunocompetent mice the severe CCHF observed in humans. This mouse-adapted variant of CCHFV significantly improves our ability to study host and viral determinants of CCHFV-induced disease in a highly tractable mouse model.


2020 ◽  
Author(s):  
David W. Hawman ◽  
Kimberly Meade-White ◽  
Shanna Leventhal ◽  
Friederike Feldmann ◽  
Atsushi Okumura ◽  
...  

AbstractCrimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. CCHF is caused by infection with the Crimean-Congo hemorrhagic fever virus (CCHFV) and case fatality rates can be as high as 30%. Despite causing severe disease in humans, our understanding of the host and viral determinants of CCHFV pathogenesis are limited. A major limitation in the investigation of CCHF has been the lack of suitable small animal models. Wild-type mice are resistant to clinical isolates of CCHFV and consequently, mice must be deficient in type I interferon responses to study the more severe aspects of CCHFV. We report here a mouse-adapted variant of CCHFV that recapitulates in adult, immunocompetent mice the severe CCHF observed in humans. This mouse-adapted variant of CCHFV significantly improves our ability to study host and viral determinants of CCHFV-induced disease in a highly tractable mouse model.


Sign in / Sign up

Export Citation Format

Share Document