Faculty Opinions recommendation of Spatial and temporal heterogeneity in climate change limits species' dispersal capabilities and adaptive potential.

Author(s):  
Ian Wang
2016 ◽  
Vol 6 (24) ◽  
pp. 8740-8755 ◽  
Author(s):  
David J. Muñoz ◽  
Kyle Miller Hesed ◽  
Evan H. Campbell Grant ◽  
David A. W. Miller

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Linda C. Weiss

Abstract Phenotypic plasticity describes the ability of an organism with a given genotype to respond to changing environmental conditions through the adaptation of the phenotype. Phenotypic plasticity is a widespread means of adaptation, allowing organisms to optimize fitness levels in changing environments. A core prerequisite for adaptive predictive plasticity is the existence of reliable cues, i.e. accurate environmental information about future selection on the expressed plastic phenotype. Furthermore, organisms need the capacity to detect and interpret such cues, relying on specific sensory signalling and neuronal cascades. Subsequent neurohormonal changes lead to the transformation of phenotype A into phenotype B. Each of these activities is critical for survival. Consequently, anything that could impair an animal’s ability to perceive important chemical information could have significant ecological ramifications. Climate change and other human stressors can act on individual or all of the components of this signalling cascade. In consequence, organisms could lose their adaptive potential, or in the worst case, even become maladapted. Therefore, it is key to understand the sensory systems, the neurobiology and the physiological adaptations that mediate organisms’ interactions with their environment. It is, thus, pivotal to predict the ecosystem-wide effects of global human forcing. This review summarizes current insights on how climate change affects phenotypic plasticity, focussing on how associated stressors change the signalling agents, the sensory systems, receptor responses and neuronal signalling cascades, thereby, impairing phenotypic adaptations.


Oecologia ◽  
2018 ◽  
Vol 188 (4) ◽  
pp. 1133-1144 ◽  
Author(s):  
Garrett W. Hopper ◽  
Keith B. Gido ◽  
Caryn C. Vaughn ◽  
Thomas B. Parr ◽  
Traci G. Popejoy ◽  
...  

2015 ◽  
Vol 85 (1) ◽  
pp. 3 ◽  
Author(s):  
Michelangelo Morganti

Recent climate change is altering the migratory behaviour of many bird species. An advancement in the timing of spring events and a shift in the geographical distribution have been detected for birds around the world. In particular, intra-Palearctic migratory birds have advanced arrivals in spring and shortened migratory distances by shifting northward their wintering grounds. These changes in migratory patterns are considered adaptive responses facilitating the adjustment of the life cycle to the phenological changes found in their breeding areas. However, in some cases, populations exposed to the same selective pressures do not show any appreciable adaptive change in their behaviour. Basing on the comparison of realized and non-realized adaptive changes, I propose here the formulation of a qualitative model that predicts the potential of migratory birds populations to change adaptively their migratory behaviour. The model assumes that the adaptive potential of migratory behaviour is fuelled by both genetic diversity and phenotypic plasticity. Populations of long-distance migrants are exposed to strong environmental canalization that largely eroded their phenotypic plasticity and reduced genetic variability, so that they show a very low amount of adaptive potential regarding migratory behaviour. On the contrary, partial-migrant populations have a highly varied genetic profile and are more plastic at the phenotypic level, and consequently show the highest amount of adaptive potential. Species with mainly social and mainly genetic determination of the migratory behaviour are separately treated in the model. Specific empirical models to foresee the adaptive strategies of wild bird populations that face to climate change can be derived from the general theoretical model. As example, a specific model about the shortening of migratory distances in Western European migratory bird is presented. Finally, a number of future research lines on the topic of adaptive potential of migratory behaviour are discussed, including some examples of concrete study cases. In conclusion, partial-migration emerge as the less known system and future research efforts on this topic are expected to be especially fruitful.


Sign in / Sign up

Export Citation Format

Share Document