Faculty Opinions recommendation of Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.

Author(s):  
Marc A Martí-Renom
2019 ◽  
Vol 74 (1) ◽  
pp. 212-222.e5 ◽  
Author(s):  
Andrés M. Cardozo Gizzi ◽  
Diego I. Cattoni ◽  
Jean-Bernard Fiche ◽  
Sergio M. Espinola ◽  
Julian Gurgo ◽  
...  

2014 ◽  
Vol 28 (24) ◽  
pp. 2778-2791 ◽  
Author(s):  
Iain Williamson ◽  
Soizik Berlivet ◽  
Ragnhild Eskeland ◽  
Shelagh Boyle ◽  
Robert S. Illingworth ◽  
...  

2020 ◽  
Vol 19 (4) ◽  
pp. 292-308 ◽  
Author(s):  
Kimberly MacKay ◽  
Anthony Kusalik

Abstract The advent of high-resolution chromosome conformation capture assays (such as 5C, Hi-C and Pore-C) has allowed for unprecedented sequence-level investigations into the structure–function relationship of the genome. In order to comprehensively understand this relationship, computational tools are required that utilize data generated from these assays to predict 3D genome organization (the 3D genome reconstruction problem). Many computational tools have been developed that answer this need, but a comprehensive comparison of their underlying algorithmic approaches has not been conducted. This manuscript provides a comprehensive review of the existing computational tools (from November 2006 to September 2019, inclusive) that can be used to predict 3D genome organizations from high-resolution chromosome conformation capture data. Overall, existing tools were found to use a relatively small set of algorithms from one or more of the following categories: dimensionality reduction, graph/network theory, maximum likelihood estimation (MLE) and statistical modeling. Solutions in each category are far from maturity, and the breadth and depth of various algorithmic categories have not been fully explored. While the tools for predicting 3D structure for a genomic region or single chromosome are diverse, there is a general lack of algorithmic diversity among computational tools for predicting the complete 3D genome organization from high-resolution chromosome conformation capture data.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 10 (17) ◽  
Author(s):  
Quentin Lamy-Besnier ◽  
Romain Koszul ◽  
Laurent Debarbieux ◽  
Martial Marbouty

ABSTRACT The Oligo-Mouse-Microbiota (OMM12) gnotobiotic murine model is an increasingly popular model in microbiota studies. However, following Illumina and PacBio sequencing, the genomes of the 12 strains could not be closed. Here, we used genomic chromosome conformation capture (Hi-C) data to reorganize, close, and improve the quality of these 12 genomes.


2020 ◽  
Author(s):  
Marlies E. Oomen ◽  
Adam K. Hedger ◽  
Jonathan K. Watts ◽  
Job Dekker

Abstract Current chromosome conformation capture techniques are not able to distinguish sister chromatids. Here we describe the protocol of SisterC1: a novel Hi-C technique that leverages BrdU incorporation and UV/Hoechst-induced single strand breaks to identify interactions along and between sister chromatids. By synchronizing cells, BrdU is incorporated only on the newly replicated strand, which distinguishes the two sister chromatids2,3. This is followed by Hi-C4 of cells that can be arrested in different stages of the cell cycle, e.g. in mitosis. Before final amplification of the Hi-C library, strands containing BrdU are specifically depleted by UV/Hoechst treatment. SisterC libraries are then sequenced using 50bp paired end reads, followed by mapping using standard Hi-C processing tools. Interactions can then be assigned as inter- or intra-sister interactions based on read orientation.


Sign in / Sign up

Export Citation Format

Share Document