genome reorganization
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 34)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Minakshi Singh ◽  
Brandon K. B. Seah ◽  
Christiane Emmerich ◽  
Aditi Singh ◽  
Christian Woehle ◽  
...  

The germ-soma distinction is a defining feature of multicellular eukaryotes. Analogous to this, ciliates, a ubiquitous microbial eukaryote lineage, have morphologically and functionally distinct nuclei, but within single cells: the germline micronucleus (MIC) and somatic macronucleus (MAC). The origins and mechanisms of the MIC to MAC transformation, especially the extensive elimination of abundant internally eliminated sequences (IESs) and transposons during genome reorganization, are great biological mysteries. Blepharisma represents one of the two earliest diverging ciliate classes, and has unique, dual pathways of MAC development, making it ideal for investigating the functioning, origins and evolution of these processes. Here, we report the MAC genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mb), arranged as numerous alternative telomere-capped minichromosomes, tens to hundreds of kilobases long. The B. stoltei MAC genome encodes eight PiggyBac transposase homologs liberated from transposons. All are subject to purifying selection, but just one, the putative Blepharisma IES excisase, has a complete catalytic amino acid triad. Numerous genes encoding other domesticated transposases are present in B. stoltei, and often are comparably strongly upregulated in a similar timeframe to model ciliate genome reorganization homologs. Our phylogenetic investigations suggest the PiggyBac homologs may have been ancestral ciliate IES excisases. The B. stoltei MAC genome, together with the upcoming MIC genome, highlights the evolution and complex interplay between transposons, domesticated transposases, and genome reorganization in the context of germline-soma differentiation within single cells.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Lindsey L. Bohr ◽  
Madison A. Youngblom ◽  
Vegard Eldholm ◽  
Caitlin S. Pepperell

Mycobacterium abscessus is a rapid growing, free-living species of bacterium that also causes lung infections in humans. Human infections are usually acquired from the environment; however, dominant circulating clones (DCCs) have emerged recently in both M. abscessus subsp. massiliense and subsp. abscessus that appear to be transmitted among humans and are now globally distributed. These recently emerged clones are potentially informative about the ecological and evolutionary mechanisms of pathogen emergence and host adaptation. The geographical distribution of DCCs has been reported, but the genomic processes underlying their transition from environmental bacterium to human pathogen are not well characterized. To address this knowledge gap, we delineated the structure of M. abscessus subspecies abscessus and massiliense using genomic data from 200 clinical isolates of M. abscessus from seven geographical regions. We identified differences in overall patterns of lateral gene transfer (LGT) and barriers to LGT between subspecies and between environmental and host-adapted bacteria. We further characterized genome reorganization that accompanied bacterial host adaptation, inferring selection pressures acting at both genic and intergenic loci. We found that both subspecies encode an expansive pangenome with many genes at rare frequencies. Recombination appears more frequent in M. abscessus subsp. massiliense than in subsp. abscessus, consistent with prior reports. We found evidence suggesting that phage are exchanged between subspecies, despite genetic barriers evident elsewhere throughout the genome. Patterns of LGT differed according to niche, with less LGT observed among host-adapted DCCs versus environmental bacteria. We also found evidence suggesting that DCCs are under distinct selection pressures at both genic and intergenic sites. Our results indicate that host adaptation of M. abscessus was accompanied by major changes in genome evolution, including shifts in the apparent frequency of LGT and impacts of selection. Differences were evident among the DCCs as well, which varied in the degree of gene content remodelling, suggesting they were placed differently along the evolutionary trajectory toward host adaptation. These results provide insight into the evolutionary forces that reshape bacterial genomes as they emerge into the pathogenic niche.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kosuke Kuwabara ◽  
Issei Harada ◽  
Yuma Matsuzawa ◽  
Tohru Ariizumi ◽  
Kenta Shirasawa

AbstractTo identify cytoplasmic male sterility (CMS)-associated genes in tomato, we determined the genome sequences of mitochondria and chloroplasts in three CMS tomato lines derived from independent asymmetric cell fusions, their nuclear and cytoplasmic donors, and male fertile weedy cultivated tomato and wild relatives. The structures of the CMS mitochondrial genomes were highly divergent from those of the nuclear and cytoplasmic donors, and genes of the donors were mixed up in these genomes. On the other hand, the structures of CMS chloroplast genomes were moderately conserved across the donors, but CMS chloroplast genes were unexpectedly likely derived from the nuclear donors. Comparative analysis of the structures and contents of organelle genes and transcriptome analysis identified three genes that were uniquely present in the CMS lines, but not in the donor or fertile lines. RNA-sequencing analysis indicated that these three genes transcriptionally expressed in anther, and identified different RNA editing levels in one gene, orf265, that was partially similar to ATP synthase subunit 8, between fertile and sterile lines. The orf265 was a highly potential candidate for CMS-associated gene. This study suggests that organelle reorganization mechanisms after cell fusion events differ between mitochondria and chloroplasts, and provides insight into the development of new F1 hybrid breeding programs employing the CMS system in tomato.


2021 ◽  
Author(s):  
Surabhi Chowdhary ◽  
Amoldeep S. Kainth ◽  
Sarah Paracha ◽  
David S. Gross ◽  
David Pincus

Mammalian developmental and disease-associated genes concentrate large quantities of the transcriptional machinery by forming membrane-less compartments known as transcriptional condensates. However, it is unknown whether these structures are evolutionarily conserved, capable of stress-inducible gene activation or involved in 3D genome reorganization. Here, we identify inducible transcriptional condensates in the yeast heat shock response (HSR). HSR condensates are biophysically dynamic spatiotemporal clusters of the sequence-specific transcription factor Heat shock factor 1 (Hsf1) with Mediator and RNA Pol II. Uniquely, HSR condensates drive the coalescence of multiple Hsf1 target genes, even those located on different chromosomes. Binding of the chaperone Hsp70 to a site on Hsf1 represses clustering, while an intrinsically disordered region on Hsf1 promotes condensate formation and intergenic interactions. Mutation of both Hsf1 determinants reprograms HSR condensates to become mammalian-like: constitutively active without intergenic coalescence. These results suggest that transcriptional condensates are ancient and flexible compartments of eukaryotic gene control.


2021 ◽  
Vol 5 (10) ◽  
pp. 1367-1381
Author(s):  
Robin Burns ◽  
Terezie Mandáková ◽  
Joanna Gunis ◽  
Luz Mayela Soto-Jiménez ◽  
Chang Liu ◽  
...  

AbstractMost diploid organisms have polyploid ancestors. The evolutionary process of polyploidization is poorly understood but has frequently been conjectured to involve some form of ‘genome shock’, such as genome reorganization and subgenome expression dominance. Here we study polyploidization in Arabidopsis suecica, a post-glacial allopolyploid species formed via hybridization of Arabidopsis thaliana and Arabidopsis arenosa. We generated a chromosome-level genome assembly of A. suecica and complemented it with polymorphism and transcriptome data from all species. Despite a divergence around 6 million years ago (Ma) between the ancestral species and differences in their genome composition, we see no evidence of a genome shock: the A. suecica genome is colinear with the ancestral genomes; there is no subgenome dominance in expression; and transposon dynamics appear stable. However, we find changes suggesting gradual adaptation to polyploidy. In particular, the A. thaliana subgenome shows upregulation of meiosis-related genes, possibly to prevent aneuploidy and undesirable homeologous exchanges that are observed in synthetic A. suecica, and the A. arenosa subgenome shows upregulation of cyto-nuclear processes, possibly in response to the new cytoplasmic environment of A. suecica, with plastids maternally inherited from A. thaliana. These changes are not seen in synthetic hybrids, and thus are likely to represent subsequent evolution.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1012
Author(s):  
Anastasia Ryzhkova ◽  
Nariman Battulin

Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Author(s):  
Kosuke Kuwabara ◽  
Issei Harada ◽  
Yuma Matsuzawa ◽  
Tohru Ariizumi ◽  
Kenta Shirasawa

AbstractTo identify cytoplasmic male sterility (CMS)-associated genes in tomato, we determined the genome sequences of mitochondria and chloroplasts in three CMS tomato lines derived from independent asymmetric cell fusions, their nuclear and cytoplasmic donors, and male fertile weedy cultivated tomato and wild relatives. The structures of the CMS mitochondrial genomes were highly divergent from those of the nuclear and cytoplasmic donors, and genes of the donors were mixed up in these genomes. On the other hand, the structures of CMS chloroplast genomes were moderately conserved across the donors, but CMS chloroplast genes were unexpectedly likely derived from the nuclear donors. Comparative analysis of the structures and contents of organelle genes and transcriptome analysis identified three genes that were uniquely present in the CMS lines, but not in the donor or fertile lines. RNA sequencing analysis indicated that these three genes transcriptionally expressed in anther, two of which were also expressed in pollen. They could be potential candidates for CMS-associated genes. This study suggests that organelle reorganization mechanisms after cell fusion events differ between mitochondria and chloroplasts, and provides insight into the development of new F1 hybrid breeding programs employing the CMS system in tomato.


Sign in / Sign up

Export Citation Format

Share Document