Faculty Opinions recommendation of Origin and evolution of the neuroendocrine control of reproduction in vertebrates, with special focus on genome and gene duplications.

Author(s):  
Manuela Simoni
2020 ◽  
Vol 100 (2) ◽  
pp. 869-943 ◽  
Author(s):  
Sylvie Dufour ◽  
Bruno Quérat ◽  
Hervé Tostivint ◽  
Catherine Pasqualini ◽  
Hubert Vaudry ◽  
...  

In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sylvain Giroud ◽  
Caroline Habold ◽  
Roberto F. Nespolo ◽  
Carlos Mejías ◽  
Jérémy Terrien ◽  
...  

Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual’s metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.


2010 ◽  
Vol 365 (1540) ◽  
pp. 547-556 ◽  
Author(s):  
Giuseppe Fusco ◽  
Alessandro Minelli

This theme issue pursues an exploration of the potential of taking into account the environmental sensitivity of development to explaining the evolution of metazoan life cycles, with special focus on complex life cycles and the role of developmental plasticity. The evolution of switches between alternative phenotypes as a response to different environmental cues and the evolution of the control of the temporal expression of alternative phenotypes within an organism's life cycle are here treated together as different dimensions of the complex relationships between genotype and phenotype, fostering the emergence of a more general and comprehensive picture of phenotypic evolution through a quite diverse sample of case studies. This introductory article reviews fundamental facts and concepts about phenotypic plasticity, adopting the most authoritative terminology in use in the current literature. The main topics are types and components of phenotypic variation, the evolution of organismal traits through plasticity, the origin and evolution of phenotypic plasticity and its adaptive value.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Heli A. M. Mönttinen ◽  
Cedric Bicep ◽  
Tom A. Williams ◽  
Robert P. Hirt

The nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.


VASA ◽  
2012 ◽  
Vol 41 (5) ◽  
pp. 313-318 ◽  
Author(s):  
Ernemann ◽  
Bender ◽  
Melms ◽  
Brechtel ◽  
Kobba ◽  
...  

Interventional therapies using angioplasty and stenting of symptomatic stenosis of the proximal supraaortic vessels have evolved as safe and effective treatment strategies. The aim of this paper is to summarize the current treatment concepts for stenosis in the subclavian and brachiocephalic artery with regard to clinical indication, interventional technique including selection of the appropriate vascular approach and type of stent, angiographic and clinical short-term and long-term results and follow-up. The role of hybrid interventions for tandem stenoses of the carotid bifurcation and brachiocephalic artery is analysed. A systematic review of data for angioplasty and stenting of symptomatic extracranial vertebral artery stenosis is discussed with a special focus on restenosis rate.


2016 ◽  
Vol 21 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Paulo S. Boggio ◽  
Gabriel G. Rêgo ◽  
Lucas M. Marques ◽  
Thiago L. Costa

Abstract. Social neuroscience and psychology have made substantial advances in the last few decades. Nonetheless, the field has relied mostly on behavioral, imaging, and other correlational research methods. Here we argue that transcranial direct current stimulation (tDCS) is an effective and relevant technique to be used in this field of research, allowing for the establishment of more causal brain-behavior relationships than can be achieved with most of the techniques used in this field. We review relevant brain stimulation-aided research in the fields of social pain, social interaction, prejudice, and social decision-making, with a special focus on tDCS. Despite the fact that the use of tDCS in Social Neuroscience and Psychology studies is still in its early days, results are promising. As better understanding of the processes behind social cognition becomes increasingly necessary due to political, clinical, and even philosophical demands, the fact that tDCS is arguably rare in Social Neuroscience research is very noteworthy. This review aims at inspiring researchers to employ tDCS in the investigation of issues within Social Neuroscience. We present substantial evidence that tDCS is indeed an appropriate tool for this purpose.


1980 ◽  
Vol 35 (8) ◽  
pp. 774-774 ◽  
Author(s):  
Hendrika Vande Kemp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document