scholarly journals Faculty Opinions recommendation of Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations.

Author(s):  
Bhagwati Gupta
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Tim A Crombie ◽  
Stefan Zdraljevic ◽  
Daniel E Cook ◽  
Robyn E Tanny ◽  
Shannon C Brady ◽  
...  

Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.


2019 ◽  
Author(s):  
Timothy A. Crombie ◽  
Stefan Zdraljevic ◽  
Daniel E. Cook ◽  
Robyn E. Tanny ◽  
Shannon C. Brady ◽  
...  

AbstractRecent efforts to understand the natural niche of the keystone model organism Caenorhabditis elegans have suggested that this species is cosmopolitan and associated with rotting vegetation and fruits. However, most of the strains isolated from nature have low genetic diversity likely because recent chromosome-scale selective sweeps contain alleles that increase fitness in human-associated habitats. Strains from the Hawaii Islands are highly divergent from non-Hawaiian strains. This result suggests that Hawaiian strains might contain ancestral genetic diversity that was purged from most non-Hawaiian strains by the selective sweeps. To characterize the genetic diversity and niche of Hawaiian C. elegans, we sampled across the Hawaiian Islands and isolated 100 new C. elegans strains. We found that C. elegans strains are not associated with any one substrate but are found in cooler climates at high elevations. These Hawaiian strains are highly diverged compared to the rest of the global population. Admixture analysis identified 11 global populations, four of which are from Hawaii. Surprisingly, one of the Hawaiian populations shares recent ancestry with non-Hawaiian populations, including portions of globally swept haplotypes. This discovery provides the first evidence of gene flow between Hawaiian and non-Hawaiian populations. Most importantly, the high levels of diversity observed in Hawaiian strains might represent the complex patterns of ancestral genetic diversity in the C. elegans species before human influence.


2021 ◽  
Author(s):  
Timothy A. Crombie ◽  
Paul Battlay ◽  
Robyn E. Tanny ◽  
Kathryn S. Evans ◽  
Claire M. Buchanan ◽  
...  

AbstractThe nematode Caenorhabditis elegans is among the most widely studied organisms, but relatively little is known about its natural ecology. Wild C. elegans have been isolated from both temperate and tropical climates, where they feed on bacteria associated with decomposing plant material. Genetic diversity is low across much of the globe but high in the Hawaiian Islands and across the Pacific Rim. The high genetic diversity found there suggests that: (1) the origin of the species lies in Hawaii or the surrounding Pacific Rim; and (2) the ancestral niche of the species is likely similar to the Hawaiian niche. A recent study of the Hawaiian niche found that genetically distinct groups appeared to correlate with elevation and temperature, but the study had a limited sample size. To better characterize the niche and genetic diversity of C. elegans on the Hawaiian Islands and to explore how genetic diversity might be influenced by local adaptation, we repeatedly sampled nematodes over a three-year period, measured various environmental parameters at each sampling site, and whole-genome sequenced the C. elegans isolates that we identified. We found that the typical Hawaiian C. elegans niche is moderately moist native forests at high elevations (500 to 1500 meters) where temperatures are cool (15 to 20°C). We measured levels of genetic diversity and differentiation among Hawaiian strains and found evidence of seven genetically distinct groups distributed across the islands. Then, we scanned these genomes for signatures of local adaptation and identified 18 distinct regions that overlap with hyperdivergent regions, which are likely maintained by balancing selection and enriched for genes related to environmental sensing, xenobiotic detoxification, and pathogen resistance. These results provide strong evidence of local adaptation among Hawaiian C. elegans and a possible genetic basis for this adaptation.


2019 ◽  
Author(s):  
Tim A Crombie ◽  
Stefan Zdraljevic ◽  
Daniel E Cook ◽  
Robyn E Tanny ◽  
Shannon C Brady ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


Sign in / Sign up

Export Citation Format

Share Document