scholarly journals Faculty Opinions recommendation of Phase transition of RNA-protein complexes into ordered hollow condensates.

Author(s):  
Françoise Brochard-Wyart
1985 ◽  
Vol 260 (21) ◽  
pp. 11781-11786
Author(s):  
R Kole ◽  
L D Fresco ◽  
J D Keene ◽  
P L Cohen ◽  
R A Eisenberg ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6287
Author(s):  
Hendrik Reuper ◽  
Benjamin Götte ◽  
Lucy Williams ◽  
Timothy J. C. Tan ◽  
Gerald M. McInerney ◽  
...  

Stress granules (SGs) are dynamic RNA–protein complexes localized in the cytoplasm that rapidly form under stress conditions and disperse when normal conditions are restored. The formation of SGs depends on the Ras-GAP SH3 domain-binding protein (G3BP). Formations, interactions and functions of plant and human SGs are strikingly similar, suggesting a conserved mechanism. However, functional analyses of plant G3BPs are missing. Thus, members of the Arabidopsis thaliana G3BP (AtG3BP) protein family were investigated in a complementation assay in a human G3BP knock-out cell line. It was shown that two out of seven AtG3BPs were able to complement the function of their human homolog. GFP-AtG3BP fusion proteins co-localized with human SG marker proteins Caprin-1 and eIF4G1 and restored SG formation in G3BP double KO cells. Interaction between AtG3BP-1 and -7 and known human G3BP interaction partners such as Caprin-1 and USP10 was also demonstrated by co-immunoprecipitation. In addition, an RG/RGG domain exchange from Arabidopsis G3BP into the human G3BP background showed the ability for complementation. In summary, our results support a conserved mechanism of SG function over the kingdoms, which will help to further elucidate the biological function of the Arabidopsis G3BP protein family.


2015 ◽  
Vol 16 (9) ◽  
pp. 22456-22472 ◽  
Author(s):  
Yangchao Dong ◽  
Jing Yang ◽  
Wei Ye ◽  
Yuan Wang ◽  
Chuantao Ye ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 432 ◽  
Author(s):  
Chandran Nithin ◽  
Pritha Ghosh ◽  
Janusz Bujnicki

RNA-protein (RNP) interactions play essential roles in many biological processes, such as regulation of co-transcriptional and post-transcriptional gene expression, RNA splicing, transport, storage and stabilization, as well as protein synthesis. An increasing number of RNP structures would aid in a better understanding of these processes. However, due to the technical difficulties associated with experimental determination of macromolecular structures by high-resolution methods, studies on RNP recognition and complex formation present significant challenges. As an alternative, computational prediction of RNP interactions can be carried out. Structural models obtained by theoretical predictive methods are, in general, less reliable compared to models based on experimental measurements but they can be sufficiently accurate to be used as a basis for to formulating functional hypotheses. In this article, we present an overview of computational methods for 3D structure prediction of RNP complexes. We discuss currently available methods for macromolecular docking and for scoring 3D structural models of RNP complexes in particular. Additionally, we also review benchmarks that have been developed to assess the accuracy of these methods.


Sign in / Sign up

Export Citation Format

Share Document