scholarly journals Alu RNA-protein complexes formed in vitro react with a novel lupus autoantibody.

1985 ◽  
Vol 260 (21) ◽  
pp. 11781-11786
Author(s):  
R Kole ◽  
L D Fresco ◽  
J D Keene ◽  
P L Cohen ◽  
R A Eisenberg ◽  
...  
2020 ◽  
Vol 4 (3) ◽  
pp. 355-364
Author(s):  
M. Sankaranarayanan ◽  
Timothy T. Weil

Drosophila eggs are highly polarised cells that use RNA–protein complexes to regulate storage and translational control of maternal RNAs. Ribonucleoprotein granules are a class of biological condensates that form predominantly by intracellular phase separation. Despite extensive in vitro studies testing the physical principles regulating condensates, how phase separation translates to biological function remains largely unanswered. In this perspective, we discuss granules in Drosophila oogenesis as a model system for investigating the physiological role of phase separation. We review key maternal granules and their properties while highlighting ribonucleoprotein phase separation behaviours observed during development. Finally, we discuss how concepts and models from liquid–liquid phase separation could be used to test mechanisms underlying granule assembly, regulation and function in Drosophila oogenesis.


2014 ◽  
Vol 67 (12) ◽  
pp. 1741 ◽  
Author(s):  
Janine K. Flores ◽  
James L. Walshe ◽  
Sandro F. Ataide

RNA biology has changed completely in the past decade with the discovery of non-coding RNAs. Unfortunately, obtaining mechanistic information about these RNAs alone or in cellular complexes with proteins has been a major problem. X-ray crystallography of RNA and RNA–protein complexes has suffered from the major problems encountered in preparing and purifying them in large quantity. Here, we review the available techniques and methods in vitro and in vivo used to prepare and purify RNA and RNA–protein complex for crystallographic studies. We also discuss the future directions necessary to explore the vast number of RNA species waiting for their atomic-resolution structure to be determined.


2021 ◽  
Vol 402 (5) ◽  
pp. 653-661
Author(s):  
Karsten Weis

Abstract DEAD-box ATPase proteins are found in all clades of life and have been associated with a diverse array of RNA-processing reactions in eukaryotes, bacteria and archaea. Their highly conserved core enables them to bind RNA, often in an ATP-dependent manner. In the course of the ATP hydrolysis cycle, they undergo conformational rearrangements, which enable them to unwind short RNA duplexes or remodel RNA-protein complexes. Thus, they can function as RNA helicases or chaperones. However, when their conformation is locked, they can also clamp RNA and create ATP-dependent platforms for the formation of higher-order ribonucleoprotein complexes. Recently, it was shown that DEAD-box ATPases globally regulate the phase-separation behavior of RNA-protein complexes in vitro and control the dynamics of RNA-containing membraneless organelles in both pro- and eukaryotic cells. A role of these enzymes as regulators of RNA-protein condensates, or ‘condensases’, suggests a unifying view of how the biochemical activities of DEAD-box ATPases are used to keep cellular condensates dynamic and ‘alive’, and how they regulate the composition and fate of ribonucleoprotein complexes in different RNA processing steps.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3384
Author(s):  
Daria V. Berdnikova ◽  
Paolo Carloni ◽  
Sybille Krauß ◽  
Giulia Rossetti

Aberrant RNA–protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA–protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.


Sign in / Sign up

Export Citation Format

Share Document