Faculty Opinions recommendation of Drivers and dynamics of a massive adaptive radiation in cichlid fishes.

Author(s):  
Joe Hoffman
2011 ◽  
pp. 333-362 ◽  
Author(s):  
Christian Sturmbauer ◽  
Martin Husemann ◽  
Patrick D. Danley

2019 ◽  
Author(s):  
George Turner ◽  
Benjamin P Ngatunga ◽  
Martin J Genner

Large, long-lived lakes, such as Lake Baikal and the African Great Lakes are known for their diverse endemic faunas. Nearby smaller isolated lakes have long been hypothesised to facilitate allopatric speciation, such as Lake Nabugabo at the edge of Lake Victoria, helping seed the radiation in the large lakes. Furthermore, crater lakes, formed by volcanic activity are often deep, long-lived and relatively isolated, and often host a number of closely-related endemics, becoming model systems for testing theories of sympatric speciation and adaptive radiation, such as Lakes Barombi Mbo in Cameroon, and Apoyo in Nicaragua. Here we report on studies of 9 crater lakes in southern Tanzania: Lakes Ikapu, Ilamba, Itamba, Itende, Kingiri, Kyungululu, Masoko (=Kisiba), Ndwati and Ngozi, plus the shallow satellite lakes Chikukutu and Chilingali in central Malawi. Additional notes are presented about fish species present in nearby river systems. The lakes differ considerably in surface area, depth and water chemistry. No permanently aquatic animals were observed in Lake Ngozi, the largest of the lakes, nor in Lake Ndwati. All of the other 7 craters lakes were found to contain cichlid fishes, comprising a total of 29 populations of which 24 are considered likely to be native, many meriting recognition as distinct species. At least one lake (Masoko) contains a diverging pair of cichlid ecomorphs likely to be undergoing sympatric ecological speciation. Another case might be the dwarf and large ecomorphs of Rhamphochromis in Lake Kingiri. In addition, 4 crater lakes are reported to contain members of other fish families: Clariidae, Cyprinidae, Danionidae and Procatopodidae. The lakes also hosted a variety of macro-invertebrates, including crabs, bivalves and gastropods. There is evidence of repeated attempts to stock all of these lakes with non-native fish species, in at least one case leading to the establishment of breeding populations of two species. This represents a major threat to these unique ecosystems. In Malawi, Lakes Chilingali and Chikukutu were recently joined as a result of damming of the outflow of the former. This ‘large Chilingali’ hosted a diverse fish fauna, including two apparently endemic haplochromine cichlid fishes of the genera Lethrinops and Rhamphochromis. The lake was heavily fished and attempts had been made to stock cages for tilapia culture using non-native populations of species already present in the lake. However, the dam was allowed to erode and it finally collapsed in 2011-13, resulting in the restoration of the previous condition of two inter-connected lakes. Little is known of the pre-impoundment lakes, but post-collapse, the lakes became shallow and swampy, with apparently greatly reduced fish diversity. Neither endemic species could be found when the lakes were sampled in 2016. Our work has indicated that the satellite lakes of Lake Malawi are important reservoirs of biodiversity that can play a major role in our understanding of speciation and adaptive radiation, but they are fragile systems currently threatened by poor management practices including intentional stocking of non-native fish.


2012 ◽  
Vol 22 (24) ◽  
pp. 2362-2368 ◽  
Author(s):  
Moritz Muschick ◽  
Adrian Indermaur ◽  
Walter Salzburger

2018 ◽  
Vol 285 (1870) ◽  
pp. 20171762 ◽  
Author(s):  
Edward D. Burress ◽  
Lubomír Piálek ◽  
Jorge R. Casciotta ◽  
Adriana Almirón ◽  
Milton Tan ◽  
...  

Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids ( Crenicichla ) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joana I. Meier ◽  
Rike B. Stelkens ◽  
Domino A. Joyce ◽  
Salome Mwaiko ◽  
Numel Phiri ◽  
...  

AbstractThe process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur.


2021 ◽  
Author(s):  
Leah DeLorenzo ◽  
Destiny Mathews ◽  
A. Allyson Brandon ◽  
Mansi Joglekar ◽  
Aldo Carmona Baez ◽  
...  

Divergence along the benthic-pelagic axis is one of the most widespread and repeated patterns of morphological variation in fishes, producing body shape diversity associated with ecology and swimming mechanics. This ecological shift is also the first stage of the explosive adaptive radiation of cichlid fishes in the East African Rift Lakes. We use two hybrid crosses of cichlids (Metriaclima sp. x Aulonocara sp. and Labidochromis sp. x Labeotropheus sp., >975 animals total) along the benthic-pelagic ecomorphological axis to determine the genetic basis of body shape diversification. Using a series of both linear and geometric shape measurements, we identify 55 quantitative trait loci (QTL) that underlie various aspects of body shape variation associated with benthic-pelagic divergence. These QTL are spread throughout the genome, each explain 3.0-7.2% of phenotypic variation, and are largely modular. Further, QTL are distinct both between these two crosses of Lake Malawi cichlids and compared to previously identified QTL for body shape in fishes such as sticklebacks. We find that body shape is controlled by many genes of small effects. In all, we find that convergent benthic and pelagic body phenotypes commonly observed across fish clades are most likely due to distinct genetic and molecular mechanisms.


2014 ◽  
Vol 281 (1795) ◽  
pp. 20140605 ◽  
Author(s):  
Moritz Muschick ◽  
Patrik Nosil ◽  
Marius Roesti ◽  
Marie Theres Dittmann ◽  
Luke Harmon ◽  
...  

Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the ‘stages model’ of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation.


Sign in / Sign up

Export Citation Format

Share Document