scholarly journals Faculty Opinions recommendation of An APEX2 proximity ligation method for mapping interactions with the nuclear lamina.

Author(s):  
Markus Engstler ◽  
Brooke Morriswood
2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Joseph R. Tran ◽  
Danielle I. Paulson ◽  
James J. Moresco ◽  
Stephen A. Adam ◽  
John R. Yates ◽  
...  

The nuclear lamina (NL) is a meshwork found beneath the inner nuclear membrane. The study of the NL is hindered by the insolubility of the meshwork and has driven the development of proximity ligation methods to identify the NL-associated/proximal proteins, RNA, and DNA. To simplify and improve temporal labeling, we fused APEX2 to the NL protein lamin-B1 to map proteins, RNA, and DNA. The identified NL-interacting/proximal RNAs show a long 3′ UTR bias, a finding consistent with an observed bias toward longer 3′ UTRs in genes deregulated in lamin-null cells. A C-rich motif was identified in these 3′ UTR. Our APEX2-based proteomics identifies a C-rich motif binding regulatory protein that exhibits altered localization in lamin-null cells. Finally, we use APEX2 to map lamina-associated domains (LADs) during the cell cycle and uncover short, H3K27me3-rich variable LADs. Thus, the APEX2-based tools presented here permit identification of proteomes, transcriptomes, and genome elements associated with or proximal to the NL.


2018 ◽  
Author(s):  
Thibault Stalder ◽  
Max Press ◽  
Shawn Sullivan ◽  
Ivan Liachko ◽  
Eva M. Top

AbstractThe rapid spread of antibiotic resistance is a serious human health threat. A range of environments have been identified as reservoirs of the antibiotic resistance genes (ARGs) found in pathogens. However, we lack understanding of the origins of these ARGs and their spread from environment to clinic. This is partly due to our inability to identify the bacterial hosts of ARGs and the mobile genetic elements that mediate this spread, such as plasmids and integrons. Here we demonstrated that the in vivo proximity ligation method Hi-C can determine the in situ host range of ARGs, plasmids, and integrons in a wastewater sample by physically linking them to their host chromosomes. Hi-C detected both previously known and novel associations between ARGs, mobile elements and host genomes, mostly validating this method. A better identification of the natural carriers of ARGs will aid the development of strategies to limit resistance spread to pathogens.


2018 ◽  
Author(s):  
Leonid A. Serebryannyy ◽  
Tom Misteli

AbstractProtein-protein interactions are essential for cellular structure and function. To delineate how the intricate assembly of protein interactions contribute to cellular processes in health and disease, new methodologies that are both highly sensitive and can be applied at large scale are needed. Here, we develop HiPLA (high-throughput imaging proximity ligation assay), a method that employs the antibody-based proximity ligation assay in a high-throughput imaging screening format to systematically probe protein interactomes. Using HiPLA, we probe the interaction of 60 proteins and associated PTMs with the nuclear lamina in a model of the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identify a subset of proteins that differentially interact with the nuclear lamina in HGPS. In combination with quantitative indirect immunofluorescence, we find that the majority of differential interactions were accompanied by corresponding changes in expression of the interacting protein. Taken together, HiPLA offers a novel approach to probe cellular protein-protein interaction at a large scale and reveals mechanistic insights into the assembly of protein complexes.


Author(s):  
Joseph R. Tran ◽  
Danielle I. Paulson ◽  
James J. Moresco ◽  
Stephen A. Adam ◽  
John R. Yates ◽  
...  

AbstractThe nuclear lamina (NL) is a proteinaceous network found beneath the inner nuclear membrane. The NL is linked to a number of dynamic cellular activities including chromatin organization, transcription and RNA/protein trafficking through nuclear pores. Our understanding of the NL has been hindered in part by the general insolubility and low extractability of proteins from this region. This has spurred the development of proximity ligation methods that label proteins and/or DNA near the NL for systematic identification (Bar et al., 2018; Chen et al., 2018b; Guelen et al., 2008; Roux et al., 2012). To simplify labeling and improve temporal resolution, we fused APEX2 (Hung et al., 2014; Lam et al., 2015) to the nuclear lamina protein lamin-B1 to map proteins, RNA and DNA associated with the NL. We show that APEX2 labeling of the NL is robust and requires as little as 20 seconds. In addition to identifying the NL proteome, this method revealed NL-proximal RNA species that were largely spliced. These NL-proximal RNAs show a bias toward long 3’ UTRs, suggesting an RNA-regulatory role of the NL. This is further supported by the finding of a bias toward longer 3’ UTRs in genes deregulated in lamin-null cells. Interestingly, these RNAs share a sequence motif in their 3’ UTRs. Finally, we demonstrate that the APEX2 method can reliably map lamina-associated domains (LADs) at different stages of the cell cycle, revealing a variability of short LADs regions enriched for histone lysine 27 trimethylation (H3K27me3). Thus the APEX2 method report here is a useful addition to the molecular toolbox for the study of the NL and permits the identification of proteome, transcriptome, and genome elements associated with this nuclear substructure.


2007 ◽  
Vol 6 (9) ◽  
pp. 1500-1509 ◽  
Author(s):  
Malin Jarvius ◽  
Janna Paulsson ◽  
Irene Weibrecht ◽  
Karl-Johan Leuchowius ◽  
Ann-Catrin Andersson ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastian Samer ◽  
Rajeev Raman ◽  
Gregor Laube ◽  
Michael R. Kreutz ◽  
Anna Karpova

AbstractJacob is a synapto-nuclear messenger protein that couples NMDAR activity to CREB-dependent gene expression. In this study, we investigated the nuclear distribution of Jacob and report a prominent targeting to the nuclear envelope that requires NMDAR activity and nuclear import. Immunogold electron microscopy and proximity ligation assay combined with STED imaging revealed preferential association of Jacob with the inner nuclear membrane where it directly binds to LaminB1, an intermediate filament and core component of the inner nuclear membrane (INM). The association with the INM is transient; it involves a functional nuclear export signal in Jacob and a canonical CRM1-RanGTP-dependent export mechanism that defines the residing time of the protein at the INM. Taken together, the data suggest a stepwise redistribution of Jacob within the nucleus following nuclear import and prior to nuclear export.


Author(s):  
N. Panté ◽  
M. Jarnik ◽  
E. Heitlinger ◽  
U. Aebi

The nuclear pore complex (NPC) is a ∼120 MD supramolecular machine implicated in nucleocytoplasmic transport, that is embedded in the double-membraned nuclear envelope (NE). The basic framework of the ∼120 nm diameter NPC consists of a 32 MD cytoplasmic ring, a 66 MD ‘plug-spoke’ assembly, and a 21 MD nuclear ring. The ‘central plug’ seen in en face views of the NPC reveals a rather variable appearance indicating that it is a dynamic structure. Projecting from the cytoplasmic ring are 8 short, twisted filaments (Fig. 1a), whereas the nuclear ring is topped with a ‘fishtrap’ made of 8 thin filaments that join distally to form a fragile, 30-50 nm distal diameter ring centered above the NPC proper (Fig. 1b). While the cytoplasmic filaments are sensitive to proteases, they as well as the nuclear fishtraps are resistant to RNase treatment. Removal of divalent cations destabilizes the distal rings and thereby opens the fishtraps, addition causes them to reform. Protruding from the tips of the radial spokes into perinuclear space are ‘knobs’ that might represent the large lumenal domain of gp210, a membrane-spanning glycoprotein (Fig. 1c) which, in turn, may play a topogenic role in membrane folding and/or act as a membrane-anchoring site for the NPC. The lectin wheat germ agglutinin (WGA) which is known to recognize the ‘nucleoporins’, a family of glycoproteins having O-linked N-acetyl-glucosamine, is found in two locations on the NPC (Fig. 1. d-f): (i) whereas the cytoplasmic filaments appear unlabelled (Fig. 1d&e), WGA-gold labels sites between the central plug and the cytoplasmic ring (Fig. le; i.e., at a radius of 25-35 nm), and (ii) it decorates the distal ring of the nuclear fishtraps (Fig. 1, d&f; arrowheads).


2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


Sign in / Sign up

Export Citation Format

Share Document