scholarly journals Faculty Opinions recommendation of Anti-NMDAR encephalitis induced in mice by active immunization with a peptide from the amino-terminal domain of the GluN1 subunit.

Author(s):  
Hiroki Ueda ◽  
Koji L Ode ◽  
Saori Yada
2020 ◽  
Author(s):  
Yuewen Ding ◽  
Zheye Zhou ◽  
Jinyu Chen ◽  
Yu Peng ◽  
Haitao Wang ◽  
...  

Abstract Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesia, and seizures. However, the underlying mechanisms of this disease remain unclear, in part because of a lack of suitable animal models. This study describes a novel mouse model of anti-NMDAR encephalitis that was induced by active immunization against NMDARs using amino-terminal domain peptides. After 12 weeks of immunization, the mice showed significant behavioral disorders and memory loss. Furthermore, antibodies from the cerebrospinal fluid of immunized mice lowered the surface NMDAR cluster density in hippocampal neurons. Immunization also impaired long-term potentiation at Schaffer collateral–CA1 synapses and reduced NMDAR-induced calcium influx. This novel mouse model may allow further research into the pathogenesis of anti-NMDAR encephalitis and aid in the development of new therapies for this disease.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuewen Ding ◽  
Zheye Zhou ◽  
Jinyu Chen ◽  
Yu Peng ◽  
Haitao Wang ◽  
...  

Abstract Background Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesia, and seizures. However, the underlying mechanisms of this disease remain unclear, in part because of a lack of suitable animal models. Methods This study describes a novel female C57BL/6 mouse model of anti-NMDAR encephalitis that was induced by active immunization against NMDARs using an amino terminal domain (ATD) peptide from the GluN1 subunit (GluN1356–385). Results Twelve weeks after immunization, the immunized mice showed significant memory loss. Furthermore, antibodies from the cerebrospinal fluid of immunized mice decreased the surface NMDAR cluster density in hippocampal neurons which was similar to the effect induced by the anti-NMDAR encephalitis patients’ antibodies. Immunization also impaired long-term potentiation at Schaffer collateral–CA1 synapses and reduced NMDAR-induced calcium influx. Conclusion We established a novel anti-NMDAR encephalitis model using active immunization with peptide GluN1356–385 targeting the ATD of GluN1. This novel model may allow further research into the pathogenesis of anti-NMDAR encephalitis and aid in the development of new therapies for this disease.


2020 ◽  
Author(s):  
Yuewen Ding ◽  
Zheye Zhou ◽  
Jinyu Chen ◽  
Yu Peng ◽  
Haitao Wang ◽  
...  

Abstract Anti-N-methyl-D-aspartate receptor (NMDA) receptor encephalitis is a recently discovered autoimmune syndrome associated with psychosis, dyskinesias, and seizures. Ectopic expression of NMDA receptors associated with ovarian teratoma is thought to mediate the initial autoimmune response against NMDA receptor encephalitis. Due to the lack of suitable animal models, the underlying mechanism of the disease remains unclear. This study described a new mice model of active immunization against the NMDA receptor with amino-terminal domain (ATD) peptides. After 12 weeks of immunization, mice were showed significant behavioral disorders and memory loss. Antibodies from CSF of immunized mice decreased surface NMDAR cluster density on hippocampus neurons. It also impaired the LTP induced at the Schaffer collateral to CA1 synapse and reduced NMDA receptors-induced calcium influx. The new model may help further research into the pathogenesis of the disease and the development of potential new therapies.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


2014 ◽  
Vol 106 (2) ◽  
pp. 151a
Author(s):  
Sagar Chittori ◽  
Janesh Kumar ◽  
Suvendu Lomash ◽  
Huaying Zhao ◽  
Peter Schuck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document