Faculty Opinions recommendation of A novel neural substrate for the transformation of olfactory inputs into motor output.

Author(s):  
Leonard Maler ◽  
Gary Marsat
PLoS Biology ◽  
2010 ◽  
Vol 8 (12) ◽  
pp. e1000567 ◽  
Author(s):  
Dominique Derjean ◽  
Aimen Moussaddy ◽  
Elias Atallah ◽  
Melissa St-Pierre ◽  
François Auclair ◽  
...  

2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


Author(s):  
Bartley G. Hoebel ◽  
◽  
Luis Hernandez ◽  
Gregory P. Mark ◽  
Emmanuel Pothos
Keyword(s):  

2020 ◽  
Author(s):  
Xiaoyang Yu

The human brain and the human language are precisely constructed together by evolution/genes, so that in the objective world, a human brain can tell a story to another brain in human language which describes an imagined multiplayer game; in this story, one player of the game represents the human brain itself. It’s possible that the human kind doesn’t really have a subjective world (doesn’t really have conscious experience). An individual has no control even over her choices. Her choices are controlled by the neural substrate. The neural substrate is controlled by the physical laws. So, her choices are controlled by the physical laws. So, she is powerless to do anything other than what she actually does. This is the view of fatalism. Specifically, this is the view of a totally global fatalism, where people have no control even over their choices, from the third-person perspective. And I just argued for fatalism by appeal to causal determinism. Psychologically, a third-person perspective and a new, dedicated personality state are required to bear the totally global fatalism, to avoid severe cognitive dissonance with our default first-person perspective and our original personality state.


2005 ◽  
Vol 94 (4) ◽  
pp. 2878-2887 ◽  
Author(s):  
Carol J. Mottram ◽  
Evangelos A. Christou ◽  
François G. Meyer ◽  
Roger M. Enoka

The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 ± 93 s) at a mean target force of 22.4 ± 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task ( P < 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks ( P > 0.1) and did not change with time ( P > 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted ( P < 0.001) both the CV for discharge rate (force task: 1–3, 12–13, and 14–15 Hz; position task: 0–1, and 1–2 Hz) and the fluctuations in motor output (force task: 5–6, 9–10, 12–13, and 14–15 Hz; position task: 6–7, 14–15, 17–19, 20–21, and 23–24 Hz). Frequency modulation of motor unit discharge rate differed for the force and position tasks and influenced the ability to sustain steady contractions.


Sign in / Sign up

Export Citation Format

Share Document