Wireless Power Transfer Through Coupled Magnetic Resonance With Conventional and Superconducting Metamaterials/ Transferência de energia sem fio através de Ressonância Magnética Acoplada com Metamateriais Convencionais e Supercondutores

2021 ◽  
Vol 7 (7) ◽  
pp. 73341-73351
Author(s):  
Arthur Henrique de Lima Ferreira ◽  
Lucas Douglas Ribeiro ◽  
Rose Mary de Souza Batalha

Wireless Power Transfer (WPT) is an option to gain mobility and convenience while charging electrical devices. Metamaterials are used to increase the energy transmission efficiency by coupled magnetic resonance. A WPT system was implemented in a 3D electromagnetic solver, where three configurations were simulated: initially without Metamaterials, with Split Ring Resonators, and with a superconductor spiral line (superconducting Metamaterials) that was designed in this work. An investigation of the power and efficiency of these systems was carried out through simulations. The distance between the coils was increased from 4 until 10 cm, and the horizontal misalignment varied up to 3 cm. The metamaterials showed themselves efficient as can be seen in the results.

Author(s):  
Antonios X. Lalas ◽  
Nikolaos V. Kantartzis ◽  
Theodoros D. Tsiboukis

Purpose – Wireless power transfer (WPT) is deemed as an emerging technology with exciting applications, like wireless charging devices, and electric vehicles, whereas metamaterials exhibit exceptional properties. For every WPT system that occupies coupled magnetic resonances, it is also mandatory to involve resonators. The purpose of this paper is to introduce a new interdigitated split-ring resonator (I-SRR) as the basic part of a WPT system, pursuing advanced levels of efficiency. Design/methodology/approach – A novel WPT system, which exploits I-SRRs as its elementary blocks, is comprehensively examined. The analysis investigates the distance between the modules, the distance between transmitting and receiving components as well as the geometrical features of the structure. Several numerical data derived via the finite element method unveil the merits of the featured configuration. Findings – The proposed arrangement reveals a noteworthy enhancement of the power delivered to the load and a promising tuning of the operational frequency via the interdigitated topology. Several parametric studies clarify the principal characteristics of the proposed setup, facilitating the design of high-end systems. In particular, the distance between the resonators and the port loops affect the matching of the input and output ports, allowing optimisation of power efficiency, while the length of the I-SRR gap can determine the operational frequency. Originality/value – Development of a WPT system, which utilises I-SRRs as its key elements. Incorporation of metamaterials into WPT technology. Efficiency enhancement of WPT systems and alternative design via geometrical modifications. The necessity of lumped elements to implement the WPT resonators is eliminated by utilising split-ring resonators components, enabling compactness in several implementations.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3803
Author(s):  
Chan-Mi Song ◽  
Hong-Jun Lim ◽  
Son Trinh-Van ◽  
Kang-Yoon Lee ◽  
Youngoo Yang ◽  
...  

In this paper, a dual-band RF wireless power transfer (WPT) system with a shared-aperture dual-band Tx array antenna for 2.4 and 5.8 GHz is proposed. The final configuration of the Tx array, which is made up of 2.4 GHz right-handed circular polarization (RHCP) patches and 5.8 GHz RHCP patches, is derived from the optimization of 2.4 and 5.8 GHz thinned arrays, ultimately to achieve high transmission efficiency for various WPT scenarios. The dual-band RF WPT Tx system including the Tx array antenna and a Tx module is implemented, and Rx antennas with a 2.4 GHz patch, a 5.8 GHz patch, and a dual-band (2.4 and 5.8 GHz) patch are developed. To validate the proposed dual-band RF WPT system, WPT experiments using a single band and dual bands were conducted. When transmitting RF wireless power on a single frequency (either 2.482 GHz or 5.73 GHz), the received power according to the distance between the Tx and Rx and the position of the Rx was measured. When the distance was varied from 1 m to 3.9 m and the transmitted power was 40 dBm, the received power value at 2.482 GHz and 5.73 GHz were measured and found to be 24.75–13.5 dBm (WPT efficiency = 2.985–0.224%) and 19.25–6.8 dBm (WPT efficiency = 0.841–0.050%), respectively. The measured results were in good agreement with the calculated results, and it is revealed that the transmission efficiency when wireless power is transmitted via beam-focusing increases more than that with conventional beam-forming. Furthermore, the dual-band WPT experiment proves that 2.482 GHz beam and 5.73 GHz beams can be formed individually and that their wireless power can be transmitted to a dual-band Rx or two different Rx.


Sign in / Sign up

Export Citation Format

Share Document