Musculoskeletal modelling in dogs: challenges and future perspectives

2016 ◽  
Vol 29 (03) ◽  
pp. 181-187 ◽  
Author(s):  
Ilse Jonkers ◽  
Walter Dingemanse ◽  
Benedicte Vanwanseele ◽  
Jos Vander Sloten ◽  
Henri van Bree ◽  
...  

SummaryMusculoskeletal models have proven to be a valuable tool in human orthopaedics research. Recently, veterinary research started taking an interest in the computer modelling approach to understand the forces acting upon the canine musculoskeletal system. While many of the methods employed in human musculoskeletal models can applied to canine musculoskeletal models, not all techniques are applicable. This review summarizes the important parameters necessary for modelling, as well as the techniques employed in human musculoskeletal models and the limitations in transferring techniques to canine modelling research. The major challenges in future canine modelling research are likely to centre around devising alternative techniques for obtaining maximal voluntary contractions, as well as finding scaling factors to adapt a generalized canine musculoskeletal model to represent specific breeds and subjects.

Author(s):  
Emerson Paul Grabke ◽  
Jan Andrysek

Lower-limb amputees can suffer from preventable pain and bone disorders attributable to suboptimal prosthesis design. Predictive modelling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based prosthesis design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models additionally enable understanding of prosthesis contributions to the human musculoskeletal system, and both prosthesis and individual muscle contributions to body support and propulsion during gait. Based on this review, forward dynamic simulation of amputee musculoskeletal models have been used to perform prosthesis design optimization using optimal control and reflex-based control. Musculoskeletal model complexity and assumptions inhibit fully predictive musculoskeletal modelling in its current state, hindering computational prosthesis design optimization. Future recommendations include validating musculoskeletal models and resultant optimized prosthesis designs, developing less computationally-expensive predictive musculoskeletal modelling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized prosthesis optimization.


Author(s):  
J. H. Muller

The major drawback of musculoskeletal models, independent of the platform used, is uncertainty in the accuracy of the predictions, whether qualitative or quantitative, from the analysis on the computational model. Body motion, predicted muscle activation and the environment reaction forces can be validated in a motion laboratory. Unfortunately, this dataset provides little to no information on the joint loads and muscle tensions that are difficult to measure. The challenge to predict in-vivo knee loads, while the actual loads are available for comparison, provides the opportunity to evaluate the viability of the strategy to set up and analyze the computational musculoskeletal model.


2014 ◽  
Vol 30 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Zachary F. Lerner ◽  
Derek J. Haight ◽  
Matthew S. DeMers ◽  
Wayne J. Board ◽  
Raymond C. Browning

Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak earlystance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM.


2021 ◽  
Vol 11 (5) ◽  
pp. 20200060
Author(s):  
Adam D. Sylvester ◽  
Steven G. Lautzenheiser ◽  
Patricia Ann Kramer

Locomotion through the environment is important because movement provides access to key resources, including food, shelter and mates. Central to many locomotion-focused questions is the need to understand internal forces, particularly muscle forces and joint reactions. Musculoskeletal modelling, which typically harnesses the power of inverse dynamics, unites experimental data that are collected on living subjects with virtual models of their morphology. The inputs required for producing good musculoskeletal models include body geometry, muscle parameters, motion variables and ground reaction forces. This methodological approach is critically informed by both biological anthropology, with its focus on variation in human form and function, and mechanical engineering, with a focus on the application of Newtonian mechanics to current problems. Here, we demonstrate the application of a musculoskeletal modelling approach to human walking using the data of a single male subject. Furthermore, we discuss the decisions required to build the model, including how to customize the musculoskeletal model, and suggest cautions that both biological anthropologists and engineers who are interested in this topic should consider.


2019 ◽  
Vol 13 (4) ◽  
Author(s):  
Emerson Paul Grabke ◽  
Kei Masani ◽  
Jan Andrysek

Abstract Many individuals with lower limb amputations or neuromuscular impairments face mobility challenges attributable to suboptimal assistive device design. Forward dynamic modeling and simulation of human walking using conventional biomechanical gait models offer an alternative to intuition-based assistive device design, providing insight into the biomechanics underlying pathological gait. Musculoskeletal models enable better understanding of prosthesis and/or exoskeleton contributions to the human musculoskeletal system, and device and user contributions to both body support and propulsion during gait. This paper reviews current literature that have used forward dynamic simulation of clinical population musculoskeletal models to perform assistive device design optimization using optimal control, optimal tracking, computed muscle control (CMC) and reflex-based control. Musculoskeletal model complexity and assumptions inhibit forward dynamic musculoskeletal modeling in its current state, hindering computational assistive device design optimization. Future recommendations include validating musculoskeletal models and resultant assistive device designs, developing less computationally expensive forward dynamic musculoskeletal modeling methods, and developing more efficient patient-specific musculoskeletal model generation methods to enable personalized assistive device optimization.


2019 ◽  
Vol 11 (sup1) ◽  
pp. S33-S34
Author(s):  
Michael J. Asmussen ◽  
Colin Firminger ◽  
Sasa Cigoja ◽  
Jared R. Fletcher ◽  
Brent Edwards ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 23 (38) ◽  
pp. no-no
Author(s):  
C. GENNARI ◽  
S. VIETH ◽  
A. COMOTTI ◽  
A. VULPETTI ◽  
J. M. GOODMAN ◽  
...  

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Florent Moissenet ◽  
Laurence Chèze ◽  
Raphaël Dumas

While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.


Sign in / Sign up

Export Citation Format

Share Document