scholarly journals A two-stage bias correction approach for downscaling and projection of daily average temperature

2019 ◽  
pp. 32-37
Author(s):  
Mohd Khairul Idlan Muhammad ◽  
Mohamad Rajab Houmsi ◽  
Ghaith Falah Ziarh ◽  
Muhammad Noor ◽  
Tarmizi Ismail ◽  
...  

Reliable projection of climate is essential for climate change impact assessment and mitigation planning. General Circulation Models (GCMs) simulations are generally downscaled into much finer spatial resolution for climate change impact studies at local and regional scales. The objective of the present study is to use a two-stage bias correction approach for downscale and project future changes of daily average temperature. The approach was applied for downscaling and projection of daily average temperature of Senai meteorological station located in Johor Bahru, Malaysia using a GCM of Coupled Model Intercomparison Project Phase 5 (CMIP5) under four representative concentration pathways (RCP) scenarios. The two-stage bias correction method was based on correction in mean factor and variability inflation factor. The model performances were assessed using different statistical measures including mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), index of agreement (MD), Nash–Sutcliffe model efficiency (NSE) and coefficient of determination (R2). Results showed that the downscaling method could simulate historical daily average temperature at the station very well. The GCM projected an increase in daily average temperature by 1.4ºC, 2.2ºC, 2.5ºC, and 3.4ºC under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 scenarios, respectively in the end of this century. It is expected that the finding of the study would help in climate change impact assessment and adopting necessary adaptation measures.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1516
Author(s):  
Tse-Yu Teng ◽  
Tzu-Ming Liu ◽  
Yu-Shiang Tung ◽  
Ke-Sheng Cheng

With improvements in data quality and technology, the statistical downscaling data of General Circulation Models (GCMs) for climate change impact assessment have been refined from monthly data to daily data, which has greatly promoted the data application level. However, there are differences between GCM downscaling daily data and rainfall station data. If GCM data are directly used for hydrology and water resources assessment, the differences in total amount and rainfall intensity will be revealed and may affect the estimates of the total amount of water resources and water supply capacity. This research proposes a two-stage bias correction method for GCM data and establishes a mechanism for converting grid data to station data. Five GCMs were selected from 33 GCMs, which were ranked by rainfall simulation performance from a baseline period in Taiwan. The watershed of the Zengwen Reservoir in southern Taiwan was selected as the study area for comparison of the three different bias correction methods. The results reveal that the method with the wet-day threshold optimized by objective function with observation rainfall wet days had the best result. Error was greatly reduced in the hydrology model simulation with two-stage bias correction. The results show that the two-stage bias correction method proposed in this study can be used as an advanced method of data pre-processing in climate change impact assessment, which could improve the quality and broaden the extent of GCM daily data. Additionally, GCM ranking can be used by researchers in climate change assessment to understand the suitability of each GCM in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document