Wireline Log and Borehole Image Interpretation for FORGE Well 58-32, Beaver County, Utah, and Integration with Core Data

Author(s):  
David A. Handwerger ◽  
John D. Mclennan

2018 ◽  
Vol 6 (3) ◽  
pp. T723-T737
Author(s):  
Tao Nian ◽  
Zaixing Jiang ◽  
Hongyu Song

Electrical borehole image logs have the potential for direct interpretation of lithofacies characteristics. The challenge is to establish a set of reliable diagnostic criteria with which electrical images can be correlated to lithofacies features such as lithology, sedimentary structures, and bedding sequences. We used the “behind-outcrop” logging procedure that can link borehole images to actual rocks and also reduce errors that are associated with core-shift process. To better reveal the correlation between borehole images and carbonate lithofacies for subsurface reservoir applications, and also make a comparative petrographic analysis with the aim of establishing diagnostic criteria for borehole images, a 200 m well was drilled in the Tarim Ordovician outcrop. A full set of borehole image data and cores with approximately 100% coring recovery rate was acquired at the same depth interval, and more than 100 stained thin sections were prepared. Electrical borehole images in wells adjacent to the outcrop were further interpreted to validate the proposed criteria. Borehole image electrofacies were established according to the image elements, such as stacked mode, bed thickness, conglomerate diameter, rim characteristics, and internal structure of bed/conglomerate, to interpret depositional/diagenetic textures and platform-slope associations. Nine image electrofacies types, corresponding to mud/wacke/pack/grain/bindstone texture, were identified and interpreted in detail. Our method reveals a set of diagnostic criteria for borehole image interpretation in carbonate platform slope, and it finally provides a powerful tool for direct interpretation of electrical images in similar reservoir environment.





2012 ◽  
Author(s):  
Haifa Rashed Al-Muraikhi ◽  
Deepak Joshi ◽  
Asmaa Faisal Al-bloushi


2021 ◽  
Author(s):  
Yu Zhang ◽  
Honglin Xiao ◽  
XiaoMing Zhang ◽  
Haidong Liu ◽  
Bo Liu ◽  
...  

Abstract Carbonate reservoir is one of the most complex and important reservoirs in the world. It was confirmed that the slip-strike fault played a crucial role in the fault-dominated carbonate reservoir in Tarim basin. It is challenging to evaluate this kind of reservoir using the open-hole log or seismic data. Identifying and characterizing the fault-dominated carbonate reservoir were the objectives of this case study. High-definition borehole resistivity image and dipole sonic logs were run in several wells in the research area. It was revealed the detail features of the fault-dominated carbonate reservoir, such as natural fractures, faults or breccias. Compared with the typical geological model of strike-slip faults and outcrop features, the characteristics of the breccia zone and the fracture zone in the strike-slip fault system were summarized from the borehole image interpretation. A unique workflow was innovated with the integration of image and sonic data. Breccias and fractures were observed in the borehole image; and reflections or attenuations in Stoneley waveforms can provide indicating flag for permeable zones. Integrated with the other related geological data like mud logging or cores, the best pay zones in the fault-dominated carbonate reservoir were located. The characteristics of the strike-slip fault was revealed with the integration of the full-bore formation microimager and dipole shear sonic imager data. The fault core was a typical breccia zone with strong dissolution, which showed good potential in permeability, but it was found that some fault cores were filled with siliceous rock or intrusive rock. The features of the fillings in the fault zone were described based on the image and sonic data. The side cores or geochemical spectroscopy logs data helped to determine the mineralogy of the fillings. The fracture zones had clear responses in the image and sonic data too. The un-filled or half-filled breccia zone were the best zones in the fault-dominated carbonated reservoir. The details of the fault-dominated carbonate reservoir could be used in the future three-dimensional geological modelling.





2021 ◽  
Author(s):  
P. Gillespie ◽  
G. Digranes ◽  
B. Graham


Author(s):  
M. Habermueller ◽  
C. Rambousek ◽  
N. Levi ◽  
P. Munday ◽  
K. Decker


2019 ◽  
Author(s):  
Kinjal Dhar Gupta ◽  
Valentina Vallega ◽  
Hiren Maniar ◽  
Philippe Marza ◽  
Hui Xie ◽  
...  


Author(s):  
Mitsuo Ohtsuki ◽  
Michael Sogard

Structural investigations of biological macromolecules commonly employ CTEM with negative staining techniques. Difficulties in valid image interpretation arise, however, due to problems such as variability in thickness and degree of penetration of the staining agent, noise from the supporting film, and artifacts from defocus phase contrast effects. In order to determine the effects of these variables on biological structure, as seen by the electron microscope, negative stained macromolecules of high density lipoprotein-3 (HDL3) from human serum were analyzed with both CTEM and STEM, and results were then compared with CTEM micrographs of freeze-etched HDL3. In addition, we altered the structure of this molecule by digesting away its phospholipid component with phospholipase A2 and look for consistent changes in structure.



Sign in / Sign up

Export Citation Format

Share Document