scholarly journals Use of the Shor’s r-Algorithm in Linear Robust Optimization Problems

Author(s):  
P. Stetsyuk ◽  
М. Stetsyuk ◽  
D. Bragin ◽  
N. Мolodyk

The paper is devoted to the description of a new approach to the construction of algorithms for solving linear programming problems (LP-problems), in which the number of constraints is much greater than the number of variables. It is based on the use of a modification of the r-algorithm to solve the problem of minimizing a nonsmooth function, which is equivalent to LP problem. The advantages of the approach are demonstrated on the linear robust optimization problem and the robust parameters estimation problem using the least moduli method. The developed octave programs are designed to solve LP problems with a very large number of constraints, for which the use of standard software from linear programming is either impossible or impractical, because it requires significant computing resources. The material of the paper is presented in three sections. In the first section for the problem of minimizing a convex function we describe a modification of the r-algorithm with a constant coefficient of space dilation in the direction of the difference of two successive subgradients and an adaptive method for step size adjustment in the direction of the antisubgradient in the transformed space of variables. The software implementation of this modification is presented in the form of Octave function ralgb5a, which allows to find or approximation of the minimum point of a convex function, or approximation of the maximum point of the concave function. The code of the ralgb5a function is given with a brief description of its input and output parameters. In the second section, a method for solving the LP problem is presented using a nonsmooth penalty function in the form of maximum function and the construction of an auxiliary problem of unconstrained minimization of a convex piecewise linear function. The choice of the finite penalty coefficient ensures equivalence between the LP-problem and the auxiliary problem, and the latter is solved using the ralgb5a program. The results of computational experiments in GNU Octave for solving test LP-problems with the number of constraints from two hundred thousand to fifty million and the number of variables from ten to fifty are presented. The third section presents least moduli method that is robust to abnormal observations or "outliers". The method uses the problem of unconstrained minimization of a convex piecewise linear function, and is solved using the ralgb5a program. The results of computational experiments in GNU Octave for solving test problems with a large number of observations (from two hundred thousand to five million) and a small number of unknown parameters (from ten to one hundred) are presented. They demonstrate the superiority of the developed programs over well-known linear programming software such as the GLPK package. Keywords: robust optimization, linear programming problem, nonsmooth penalty function, r-algorithm, least modulus method, GNU Octave.

Author(s):  
John Alasdair Warwicker ◽  
Steffen Rebennack

The problem of fitting continuous piecewise linear (PWL) functions to discrete data has applications in pattern recognition and engineering, amongst many other fields. To find an optimal PWL function, the positioning of the breakpoints connecting adjacent linear segments must not be constrained and should be allowed to be placed freely. Although the univariate PWL fitting problem has often been approached from a global optimisation perspective, recently, two mixed-integer linear programming approaches have been presented that solve for optimal PWL functions. In this paper, we compare the two approaches: the first was presented by Rebennack and Krasko [Rebennack S, Krasko V (2020) Piecewise linear function fitting via mixed-integer linear programming. INFORMS J. Comput. 32(2):507–530] and the second by Kong and Maravelias [Kong L, Maravelias CT (2020) On the derivation of continuous piecewise linear approximating functions. INFORMS J. Comput. 32(3):531–546]. Both formulations are similar in that they use binary variables and logical implications modelled by big-[Formula: see text] constructs to ensure the continuity of the PWL function, yet the former model uses fewer binary variables. We present experimental results comparing the time taken to find optimal PWL functions with differing numbers of breakpoints across 10 data sets for three different objective functions. Although neither of the two formulations is superior on all data sets, the presented computational results suggest that the formulation presented by Rebennack and Krasko is faster. This might be explained by the fact that it contains fewer complicating binary variables and sparser constraints. Summary of Contribution: This paper presents a comparison of the mixed-integer linear programming models presented in two recent studies published in the INFORMS Journal on Computing. Because of the similarity of the formulations of the two models, it is not clear which one is preferable. We present a detailed comparison of the two formulations, including a series of comparative experimental results across 10 data sets that appeared across both papers. We hope that our results will allow readers to take an objective view as to which implementation they should use.


Author(s):  
Noam Goldberg ◽  
Steffen Rebennack ◽  
Youngdae Kim ◽  
Vitaliy Krasko ◽  
Sven Leyffer

AbstractWe consider a nonconvex mixed-integer nonlinear programming (MINLP) model proposed by Goldberg et al. (Comput Optim Appl 58:523–541, 2014. 10.1007/s10589-014-9647-y) for piecewise linear function fitting. We show that this MINLP model is incomplete and can result in a piecewise linear curve that is not the graph of a function, because it misses a set of necessary constraints. We provide two counterexamples to illustrate this effect, and propose three alternative models that correct this behavior. We investigate the theoretical relationship between these models and evaluate their computational performance.


2011 ◽  
Vol 21 (03) ◽  
pp. 725-735 ◽  
Author(s):  
K. SRINIVASAN ◽  
I. RAJA MOHAMED ◽  
K. MURALI ◽  
M. LAKSHMANAN ◽  
SUDESHNA SINHA

A novel time delayed chaotic oscillator exhibiting mono- and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.


1994 ◽  
Author(s):  
Hongyu Liu ◽  
Yialei Wang ◽  
Peimao Sun ◽  
Tianyun Zhang ◽  
Rong Jiang

1993 ◽  
Vol 03 (02) ◽  
pp. 471-481 ◽  
Author(s):  
A. A. A. NASSER ◽  
E. E. HOSNY ◽  
M. I. SOBHY

This paper includes a method for detecting the maximum possible range of bifurcations based upon the multilevel oscillation technique. An application of the method to Chua's circuit, and new simulation results using the slope of the piecewise-linear function as a bifurcation parameter are presented.


Sign in / Sign up

Export Citation Format

Share Document