operational amplifiers
Recently Published Documents


TOTAL DOCUMENTS

1007
(FIVE YEARS 95)

H-INDEX

37
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3148
Author(s):  
Martín Alejandro Valencia-Ponce ◽  
Esteban Tlelo-Cuautle ◽  
Luis Gerardo de la Fraga

In CMOS integrated circuit (IC) design, operational amplifiers are one of the most useful active devices to enhance applications in analog signal processing, signal conditioning and so on. However, due to the CMOS technology downscaling, along the very large number of design variables and their trade-offs, it results difficult to reach target specifications without the application of optimization methods. For this reason, this work shows the advantages of performing many-objective optimization and this algorithm is compared to the well-known mono- and multi-objective metaheuristics, which have demonstrated their usefulness in sizing CMOS ICs. Three CMOS operational transconductance amplifiers are the case study in this work; they were sized by applying mono-, multi- and many-objective algorithms. The well-known non-dominated sorting genetic algorithm version 3 (NSGA-III) and the many-objective metaheuristic-based on the R2 indicator (MOMBI-II) were applied to size CMOS amplifiers and their sized solutions were compared to mono- and multi-objective algorithms. The CMOS amplifiers were optimized considering five targets, associated to a figure of merit (FoM), differential gain, power consumption, common-mode rejection ratio and total silicon area. The designs were performed using UMC 180 nm CMOS technology. To show the advantage of applying many-objective optimization algorithms to size CMOS amplifiers, the amplifier with the best performance was used to design a fractional-order integrator based on OTA-C filters. A variation analysis considering the process, the voltage and temperature (PVT) and a Monte Carlo analysis were performed to verify design robustness. Finally, the OTA-based fractional-order integrator was used to design a fractional-order chaotic oscillator, showing good agreement between numerical and SPICE simulations.


2021 ◽  
pp. 325-373
Author(s):  
Stephan J. G. Gift ◽  
Brent Maundy

2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2021 ◽  
Author(s):  
Ara Abdulsatar Assim Assim ◽  
Evgenii Balashov

The given work is devoted to designing and implementing different dynamic offset cancellation techniques for 50 nm technology CMOS operational amplifiers. The goal is to minimize or get rid of the effects of the offset voltage. Offset voltage exists in all differential amplifiers due to the fact that no pair of transistors can be fabricated with the same size, there is always a slight difference in their dimensions (length or width), this gives rise to an undesirable effect called offset, the value of offset voltage for cheap commercial amplifiers are in the range of 1 to 10 mV, de-spite the fact that this isn’t a significant value, due to the high gain of such amplifiers, this voltage is amplified by tens or hundreds of times, this results in clipping of the output signal and this further limits the amplifier’s maximum allowable input voltage within the given dynamic range, hence its of great importance to take this small voltage into consideration, low-offset amplifiers find applications in mixers, analog to digital converters, instrumentation devices, etc. In this thesis, by using two different techniques for removing offset voltage (chopping and auto-zeroing), five low offset operational amplifiers were designed. The implemented methods reduced the flicker noise by more than 457 times (from 9.4 nV/√Hz to 20 pV/√Hz) at 1 Hz. All the simulations were done using Cadence Virtuoso.


2021 ◽  
pp. 11-31
Author(s):  
Lucas Compassi Severo ◽  
Wilhelmus Maria Adrianus Van Noije

Sign in / Sign up

Export Citation Format

Share Document