Enhancing marsh elevation using sediment augmentation: A case study from southern California, USA

Shore & Beach ◽  
2021 ◽  
pp. 21-32

Tidal marshes are an important component of estuaries that provide habitat for fish and wildlife, protection from flooding, recreation opportunities, and can improve water quality. Critical to maintaining these functions is vertical accretion, a key mechanism by which tidal marshes build elevation relative to local sea level. The beneficial use of dredged material to build marsh elevations in response to accelerating sea level rise has gained attention as a management action to prevent habitat loss over the coming decades. In January 2016, a sediment augmentation project using local dredged material was undertaken at Seal Beach National Wildlife Refuge in Anaheim Bay, California, USA, to benefit tidal marsh habitat and the listed species it supports. The application process added 12,900 cubic meters of sediment with an initial, average 22-cm gain in elevation over a 3.2-hectare site. Due to sediment characteristics and higher than anticipated elevations in some areas, vegetation colonization did not occur at the expected rate; therefore, adaptive management measures were undertaken to improve hydrology of the site and facilitate vegetation colonization. More case studies that test and monitor sea level adaptation actions are needed to assist in the planning and implementation of climate-resilient projects to prevent coastal habitat loss over the coming century.

2013 ◽  
Vol 11 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Tyler C Coverdale ◽  
Nicholas C Herrmann ◽  
Andrew H Altieri ◽  
Mark D Bertness

Author(s):  
Rachel K. Gittman ◽  
Steven B. Scyphers ◽  
Christopher J. Baillie ◽  
Anna Brodmerkel ◽  
Jonathan H. Grabowski ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


2021 ◽  
Vol 13 (13) ◽  
pp. 7503
Author(s):  
Alexander Boest-Petersen ◽  
Piotr Michalak ◽  
Jamal Jokar Arsanjani

Anthropogenically-induced climate change is expected to be the contributing cause of sea level rise and severe storm events in the immediate future. While Danish authorities have downscaled the future oscillation of sea level rise across Danish coast lines in order to empower the coastal municipalities, there is a need to project the local cascading effects on different sectors. Using geospatial analysis and climate change projection data, we developed a proposed workflow to analyze the impacts of sea level rise in the coastal municipalities of Guldborgsund, located in Southeastern Denmark as a case study. With current estimates of sea level rise and storm surge events, the island of Falster can expect to have up to 19% of its landmass inundated, with approximately 39% of the population experiencing sea level rise directly. Developing an analytical workflow can allow stakeholders to understand the extent of expected sea level rise and consider alternative methods of prevention at the national and local levels. The proposed approach along with the choice of data and open source tools can empower other communities at risk of sea level rise to plan their adaptation.


2009 ◽  
Vol 53 (2) ◽  
pp. 192-206 ◽  
Author(s):  
Elaine Sharplin

This qualitative multiple-site case study explores the experiences of imported and overseas-qualified teachers appointed to fill ‘difficult-to-staff’ Western Australian rural schools. In a climate of global teacher shortages, investigation of the strategies adopted to solve this problem requires empirical examination. The study of six imported and overseas-qualified teachers found that they experienced difficulties with the employment application process, were not adequately inducted into the system and experienced difficulties with cultural adaptation related to pedagogy, behaviour management and language. These teachers still remained in schools for lengths of time comparable to their Australian-born counterparts. Transitions into schools could be assisted with improved appointment processes, induction and school-based support. A research agenda for further investigation of this field is recommended.


Sign in / Sign up

Export Citation Format

Share Document