scholarly journals Women, Water & Well-Being: A Case Study of ‘Kuttadampadam’ in Palakkad, Kerala

Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.

2018 ◽  
Vol 7 (4.34) ◽  
pp. 14
Author(s):  
Nural Asma Ezzatee Mohd Razak ◽  
Mohd Khairul Amri Kamarudin ◽  
Noorjima Abd Wahab ◽  
Ahmad Shakir Mohd Saudi ◽  
Muhammad Hafiz Md Saad ◽  
...  

Water resource management is important for human well-being, ecosystems development and protection of existing water bodies from pollution and exploitation. Water resource management and sedimentation are carried out in Terengganu River Basin, Terengganu. The main objective is to study water resources management on sediment problems in the Terengganu River Basin. The Gravimetric method was used to analysis the TSS measured in mg/L. 250 ml water sample was needed for each study area (each station). Based on the cross section trend and the average downstream and middle section of the Sungai Terengganu system, the average TSS level is higher than the upper section. The minimum width allocation of river reserves to control development near the river is based on the Department of Irrigation and Drainage (DID). Finally, there are a few recommendations of sedimentation management around Terengganu River Basin that will improve the river water quality, especially in Malaysia. 


2015 ◽  
Vol 5 (1) ◽  
pp. 47
Author(s):  
Soto-Montes Gloria ◽  
Herrera-Pantoja Marina

<p class="emsd"><span lang="EN-GB">More than half of the world’s population currently lives in urban areas. The fastest growing megacities are occurring mainly in developing countries, where stresses on water systems already pose major challenges for governments and water utilities. Climate change is expected to further burden water resource management, putting at risk governments’ ability to guarantee secure supplies and sustainable development. In this study, the significance of assessing the implications of climate change on water resources in megacities as an important component of the adaptation process is explored. The Mexico City Metropolitan Area (MCMA), one of the largest cities in the world, is presented as a case study. The downscaled outputs of the General Circulation Model GFDLCM2a for the A1B and B1 gas emissions scenarios for the period 2046–2081 and a statistical model were used to simulate the likely impacts of climate change in water resources and domestic water demand. The results showed that an increase in temperature and changes in precipitation patterns could increase household water demand for both scenarios, between 0.8% and 6.3% in the MCMA. The future projections also estimated increases of 150% and 200% in events with rainfall intensity of more than 60 mm d<sup>-1</sup> and 70 mm d<sup>-1</sup> respectively, drawing attention to the critical impacts these changes may have on flood events. Despite the uncertainty of models projections, future climate change scenarios have proven to be a flexible guide to identify vulnerabilities of water resources and support strategic adaptation planning. In order to increase their adaptive capacity and resilience to the effects of an uncertain climate change, megacities should consider implementing an integrated water resources management approach that creates opportunities through adequate policies, new technologies, flexible frameworks and innovative actions. </span></p>


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


Sign in / Sign up

Export Citation Format

Share Document