scholarly journals Performance of Infill Framed Structures During Earthquake: A State-of-the- Art Review

Author(s):  
Priyanka . ◽  
◽  
Shobha Ram ◽  
Alok Verma ◽  

Masonry infill walls are widely known to increase the lateral stiffness of the structure and for this reason, it is accepted all over the world. This paper presents a review work on the performance of infill framed structures that were damaged during several earthquakes. A study of the behavior of damaged buildings during different earthquakes in the world has been carried out. The mentioned earthquakes substantially caused damage to the RC buildings. The RC buildings were damaged primarily because of improper design and reinforcement detailing at the design phase and improper workmanship and quality control at the construction phase. The main objective of this paper is to describe and analyze the failure patterns observed in reinforced concrete frame buildings with masonry infill walls and without masonry infill walls all over the world.

2010 ◽  
Vol 133-134 ◽  
pp. 27-30 ◽  
Author(s):  
K.J. Willam ◽  
C. Citto ◽  
P.B. Shing

The paper summarizes the main research findings on masonry infill walls which were obtained within the framework of a comprehensive NSF-NEESR-SG project directed by Prof. Benson Shing at UC San Diego (Shing et al. 2009). The main focus of this contribution are experimental and computational observations on 2/3 scale unreinforced masonry panels bounded by a reinforced concrete frame which were subjected to cyclic push-over testing at CU Boulder under constant vertical pre-loading. This study included two-wythe masonry panels of 133in x75.5in size (3.378 x1.897m) with and without openings in form of eccentric windows and doors. The background experiments did include a suite of masonry prism tests on rectilinear and slanted masonry prisms providing important insight into the composite behavior of mortar and brick construction. The paper concludes with remarks on the experimental observations when the panels were integrated into infill walls of two-bay width and three-story height with and without retrofits of reinforced ECC layers (engineered cementitious composites) which were attached to one side for quasistatic testing at CU Boulder, and to both sides of the wall for dynamic shake table testing at UC San Diego.


Bauingenieur ◽  
2018 ◽  
Vol 93 (09) ◽  
pp. 333-341
Author(s):  
C. Butenweg ◽  
M. Marinkovic

Stahlbetonrahmentragwerke mit Mauerwerksausfachungen weisen nach Erdbebenereignissen häufig schwere Schäden auf, da die Ausfachungen ohne weitere konstruktive Maßnahmen mit vollem Kontakt zum Stahlbetonrahmen eingemauert werden. Durch die unplanmäßige Beteiligung am horizontalen Lastabtrag erfahren die Ausfachungen Belastungen in Wandebene und beeinflussen das globale Schwingungsverhalten der Rahmentragwerke. In Kombination mit den gleichzeitig auftretenden seismischen Trägheitskräften senkrecht zur Wand führt dies in vielen Fällen zu einem Versagen der mit niedrigen Festigkeiten ausgeführten Ausfachungen. Dies war der Anlass in dem europäischen Forschungsprojekt INSYSME ein Entkopplungssystem zu entwickeln, mit dem Rahmen und Ausfachung durch ein spezielles Profil aus Elastomeren entkoppelt werden. Das Profil ermöglicht Relativverschiebungen zwischen Rahmen und Ausfachung und stellt gleichzeitig die Aufnahme von Belastungen senkrecht zur Wand sicher. Der Beitrag erläutert zunächst den Aufbau des Systems und gibt einen Überblick über die in Kleinbauteilversuchen ermittelten Tragfähigkeiten. Zudem werden experimentelle Untersuchungen an mit hochwärmedämmenden Mauerziegeln ausgefachten Stahlbetonrahmen mit und ohne Entkopplungssystem für getrennte und kombinierte Belastungen in und senkrecht zur Wandebene vorgestellt. Auf Grundlage einer Versuchsauswertung und eines Ergebnisvergleichs werden Wirkungsweise und Effektivität des entwickelten Entkopplungssystems demonstriert.


Author(s):  
Ziad Azzi ◽  
Caesar Abi Shdid

The majority of new and existing building inventories in the Middle East consist of reinforced concrete skeletal structures with outer shells composed of unreinforced masonry infill walls. In the absence of any mandatory seismic design requirements, these buildings will sustain catastrophic damage when exposed to high seismic activity. Investigating the behavior of such infill walls when exposed to ground motion is therefore an important topic. Experimental tests using shake table out-of-plane ground motion of the 1940 El Centro earthquake displacement are conducted on 3:10 scaled specimens of a single story reinforced concrete frame with a masonry infill wall in between. The test specimens are constructed with the same materials and construction practices commonly used in the region. Displacements and strains are compared with a finite element model of the frame. Moreover, the observed overall behavior of the infill is compared to that of the computer model. The recorded strains in the mortar joints exceeded cracking limits, whereas the overall stability of the wall in out-of-plane bending was not compromised. Recommendations on the use of these structural elements are formulated.


2017 ◽  
Vol 11 (1) ◽  
pp. 919-931 ◽  
Author(s):  
Mohamed M. Abdelaziz ◽  
Mohamed S. Gomaa ◽  
Hany El-Ghazaly

Introduction:Unreinforced Masonry infill walls (URM) are commonly used in the Reinforced Concrete (RC) framed structures as interiors and exteriors partition walls. Although they usually are not considered in the structural analysis and design, their influence on the seismic performance of the framed structures is significant. A common practice in the modern and old RC buildings is to remove the URM walls in the lower stories for commercial reasons; garages, storages, shopsetc.Methods:In the present work, the effect of the URM walls on seismic performance of the RC framed structure will be studied. For that, three groups of 2-D three-bay framed structures, which are fully and partially infilled with the URM walls, will be studied. These groups are classified as three stories, six stories, and nine stories RC framed structures representing low, medium and, high rise buildings; respectively. In each group, different infill panels' configuration will be studied in order to simulate the cases of ignoring or considering the stiffness and strength of the URM. Double-strut nonlinear cyclic model for masonry panels has been utilized in order to account for the structural action of the URM walls. Pushover analysis is adopted for the evaluation of the seismic response of the frames considering the material inelasticity and the geometric nonlinearity in the analysis.Results and Conclusion:Some selected numerical simulation results in terms of base shear forces, lateral deflections, and inter-story drift ratios are obtained for all the considered configurations and presented in comparative way. The regular distribution of the infill walls can improve the framed structure performance. However, omitting the infill from the ground story leads to soft story phenomena as the columns in this story are more vulnerable due to the shear forces acting on them.


Sign in / Sign up

Export Citation Format

Share Document