scholarly journals Unusual becoming Usual: recent persistent-rainstorm events and their implications for debris flow risk management in the northern Apennines of Italy

Author(s):  
Alessandro Corsini ◽  
Giuseppe Ciccarese ◽  
Giovanni Truffelli
2021 ◽  
Author(s):  
Juan Daniel Rios-Arboleda

<p>This research expands the original analysis of Baker and Costa (1987) including data from Europe and South America with the objective to understand if there are emerging latitudinal patterns. In addition, the threshold proposed by Zimmermann et al. (1997) it is evaluated with the data from tropical zones finding that this is a good predictor.</p><p>Mainly, recent Debris Flow occurred in South America are analyzed with the aim of identifying the best risk management strategies and their replicability for developing countries, particularly, the cases that have occurred in Colombia and Venezuela in the last 30 years are analyzed in order to compare management strategies and understand which are the most vulnerable areas to this phenomenon.</p><p>It is concluded that large-scale and multinational projects such as SED ALP are required in South America to better characterize events that have left multiple fatalities (sometimes hundreds of people) and better understand how to manage the risk on densely populated areas.</p><p>Finally, the use of amateur videos is proposed to characterize these events in nations with limited budgets for projects such as SED ALP, methodology that will be described extensively in later works.</p>


Landslides ◽  
2016 ◽  
Vol 13 (6) ◽  
pp. 1493-1507 ◽  
Author(s):  
Holger Frey ◽  
Christian Huggel ◽  
Yves Bühler ◽  
Daniel Buis ◽  
Maria Dulce Burga ◽  
...  

2008 ◽  
Vol 8 (3) ◽  
pp. 539-558 ◽  
Author(s):  
H. Staffler ◽  
R. Pollinger ◽  
A. Zischg ◽  
P. Mani

Abstract. The main goals of this study were to identify the alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied. The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.


2021 ◽  
Author(s):  
Nina Marlovits ◽  
Martin Mergili ◽  
Thomas Glade

<p>History has shown that cascading landslides, such as the debris avalanches from Huascarán in 1962 and 1970, the Kolka-Karmadon rock-ice-avalanche in 2002, or the rock avalanche-debris flow event of Bondo in 2017, can be very destructive due to their high energies, velocities and volumes. They can lead to large numbers of fatalities, huge material damage, and disruption of critical infrastructure.</p><p>Cascading landslides are a specific class of multi-hazard events in which one type of motion transforms into another or an initial, primary movement triggers a secondary process. High-mountain areas are particularly prone to this type of landslides due to their dynamic, rapidly changing environments and their high relief. For example, an initial rock fall can reach snow or ice masses and transform into a rock-snow- or rock-ice-avalanche, or into a debris flow. Physically-based numerical modelling is often used for the attempt to predict such events as a basis for the design of risk management strategies such as early warning systems. However, we identify at least two specific types of challenges making accurate and reliable predictions highly difficult:</p><ul><li>(a) The dynamic behaviour of such process chains, especially in the transition phase, is not yet fully understood. Existing models are either developed for (i) fall or (ii) flow processes. Whereas substantial progress has been made in previous years in the integrated simulation of flow-type movements, no software which fully and directly considers the transformation of fall to flow processes is known to the authors. Therefore, it is not yet possible to simulate fall-flow sequences of cascading landslide events with one single tool. Model chains have to be used instead, which have a limited capacity for appropriately representing the transition phase between the two types of processes.</li> <li>(b) Limited knowledge on the initial conditions and input parameters represents another severe limitation. Model input relies on available information on previous events and on certain characteristics of the (possible) release and impact area. Obviously, the quality of the data set is significantly influencing the model results. Whereas the scientific community is far away from exact predictions of landslide impact, an important objective should consist in better constraining the definition of possible scenarios to be considered for hazard and risk management.</li> </ul><p>For the reasons highlighted, it remains highly challenging to adequately predict the impact areas, energies, and travel times of cascading landslides in space and time. Nevertheless, stakeholders require such predictions for decisions on sustainable hazard and risk management strategies. Therefore, the aims of this study are (i) to evaluate possibilities to appropriately combine models for fall and flow processes and (ii) to examine data acquisition methods for the model input. Furthermore, (iii) appropriate strategies to present and to communicate simulation results need to be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document