tectonic erosion
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Ryosuke Oyanagi ◽  
Atsushi Okamoto ◽  
Madhusoodhan Satish-Kumar ◽  
Masayo Minami ◽  
Yumiko Harigane ◽  
...  

AbstractThe hadal zone at trenches is a unique region where forearc mantle rocks are directly exposed at the ocean floor owing to tectonic erosion. Circulation of seawater in the mantle rock induces carbonate precipitation within the deep-sea forearc mantle, but the timescale and rates of the circulation are unclear. Here we investigated a peculiar occurrence of calcium carbonate (aragonite) in forearc mantle rocks recovered from ~6400 m water depth in the Izu–Ogasawara Trench. On the basis of microtextures, strontium–carbon–oxygen isotope geochemistry, and radiocarbon analysis, we found that the aragonite is sourced from seawater that accumulated for more than 42,000 years. Aragonite precipitation is triggered by episodic rupture events that expel the accumulated fluids at 10−2–10−1 m s−1 and which continue for a few decades at most. We suggest that the recycling of subducted seawater from the shallowest forearc mantle influences carbon transport from the surface to Earth’s interior.


2021 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave R. Stegman ◽  
Madeleine Kerr

Abstract. Subduction zones represent the only major pathway by which continental material can be returned to the Earth's mantle. Constraining the sediments mass flux through subduction zones is important to the understanding of both petrogenesis of continental crust, and the recycling of volatiles and continental material back into the mantle over long periods of geologic time. When sediments are considered, convergent margins appear to fall into one of two classes: accretionary and erosive. Accretionary margins are dominated by accretion of thick piles of sediments (> 1 km) from the subducting plate, while tectonic erosion is favored in regions where the sedimentary cover is < 1 km. However, as data help define geometry of the global subduction system, the consequences of the two styles of margins on subduction dynamics remain poorly resolved. In this study, we run systematic 2-D numerical simulations of subduction to investigate how sediment fluxes influence subduction dynamics and plate coupling. We vary the thickness and viscosity of the sediment layer entering subduction, the thickness of the upper plate, and the driving velocity of the subducting plate (i.e., kinematic boundary conditions). Our results show three modes of subduction interface: a) Tectonic erosion margin (high viscosity sediment layer), b) Low angle accretionary wedge margin (low viscosity, thin sediment layer), and c) High angle accretionary wedge margin (low viscosity, thick sediment layer). We find that the properties of the sediment layer modulate the extent of viscous coupling at the interface between the subducting and overriding plates. When the viscous coupling is increased, an erosive style margin will be favored over an accretionary style. On the other hand, when the viscous coupling is reduced, sediments are scrapped-off the subducting slab to form an accretionary wedge. Diagnostic parameters are extracted automatically from numerical simulations to analyze the dynamics and differentiate between these modes of subduction margin. Models of tectonic erosion margins show small radii of curvature, slow convergence rates and thin subduction interfaces, while results of accretionary margins show large radii of curvature, faster convergence rates and dynamic accretionary wedges. These diagnostics parameters are then linked with observations of present-day subduction zones.


2021 ◽  
Vol 564 ◽  
pp. 116893
Author(s):  
Daniel Pastor-Galán ◽  
Christopher J. Spencer ◽  
Tan Furukawa ◽  
Tatsuki Tsujimori

2021 ◽  
Author(s):  
Elenora van Rijsingen ◽  
Eric Calais ◽  
Romain Jolivet ◽  
Jean-Bernard de Chabalier ◽  
Richard Robertson ◽  
...  

&lt;p&gt;Horizontal GPS velocities show that the Lesser Antilles subduction zone is currently experiencing low interseismic coupling, meaning that little to no elastic strain is building up as the North- and South American plates subduct beneath the Caribbean plate. However, geological data on Quaternary coral terraces and active micro-atolls in the central part of the arc reveal slow subsidence over the past 125,000 to 100 years, likely tectonic in origin. It has been proposed that coupling along the subduction interface could be responsible for this geological subsidence. We use forward elastic models with a realistic slab geometry to show that a locked subduction interface would actually produce uplift of the island arc, which contradicts these geological observations. We also show that vertical GPS data in the Lesser Antilles indicates a subsidence of 1-2 mm/yr of the entire arc. This short-term subsidence is in agreement with the ~100-year trend of 1.1&amp;#160;mm/yr subsidence derived from coral micro-atolls in eastern Martinique. Since locking of the subduction interface is inconsistent with this observed subsidence of the arc, we explore other mechanisms that could this observation, such as postseismic effects of historical earthquakes, slab retreat, tectonic erosion, accretionary wedge collapse or extension in the overriding plate.&amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Daniel Pastor-Galán ◽  
Christopher Spencer ◽  
Tan Furukawa ◽  
Tatsuki Tsujimori

2021 ◽  
Vol 40 (6) ◽  
pp. 3-19
Author(s):  
I.Yu. Safonova ◽  
◽  
А.I. Khanchuk ◽  

The paper presents a review of processes of subduction or tectonic erosion at the Pacific-type convergent margins (PTCM) including definition of “tectonic erosion”, its triggers, driving forces and consequences. We review examples of tectonic erosion at the Circum-Pacific PTCMs and at the fossil PTCMs of the Paleo-Asian Ocean (PAO) currently hosted by the Central-Asian Orogenic Belt (CAOB). Recent geological and stratigraphic studies have shown two types of PTCMs: accreting and eroding. Accreting PTCMs consist of older deposits of accretionary and frontal prisms and grow oceanward, i.e. the trench retreats. Eroding PTCMs are characterized by the destruction of the prism, approaching arc and trench and typically form during shallow-angle and fast subduction of an oceanic slab with oceanic floor topographic highs. The mechanism of tectonic erosion includes destruction of oceanic slab, island arcs, accretionary prism, fore-arc and related prism. Tectonic erosion is a common phenomenon at many Circum-Pacific PTCMs, e.g., in South America, Tonga and Nankai troughs, Alaska. Accretion and subduction of oceanic rises contributes greatly to the processes of formation, transformation and destruction of continental crust at PTCM. The episodes of tectonic erosion can be also reconstructed for an ancient ocean, for example, for the PAO, which evolution and suturing formed the CAOB. Many CAOB foldbelts (Altai, Tienshan, eastern Kazakhstan, Transbaikalia, Mongolia) carry signs of disap-pearance of big volumes of continental crust (arcs). Studying processes responsible not only for the formation of continental crust, but also for the disappearance of big volumes of crustal mate-rial is important for correct evaluation of the nature of intra-continental orogenic belts, e.g., CAOB, and development of reliable tectonic models.


2020 ◽  
Author(s):  
Betti Hegyi ◽  
Zoltan Erdos ◽  
Ritske S. Huismans ◽  
Christoph von Hagke

&lt;p&gt;Triangle zones in fold and thrust belts are enigmatic structures bound by foreland verging thrust zones and back-thrusts verging towards the hinterland. The geometry as well as kinematic evolution of these structures has been the subject of a wide range of studies over the last few decades. The understanding of triangle zone mechanics is incomplete although different driving mechanisms for their formation have been proposed. So far few &amp;#8211; mostly analogue &amp;#8211; modeling studies have focused on understanding the primary factors controlling their formation. Factors suggested to have a first order control on the formation of triangle zones include the rheological properties of the detachment and overburden rocks, the thickness of the overburden rocks, syn-tectonic erosion and sedimentation rate, fluid over-pressure conditions, and the angle of the detachment. Here we use the arbitrary Lagrangian-Eularian finite element code FANTOM to examine the development of triangle zones. We focus especially on the effect of the angle and rheology of the detachment, the rheology of the overburden strata, and syn-tectonic deposition.&amp;#160;&lt;/p&gt;


Lithos ◽  
2020 ◽  
Vol 354-355 ◽  
pp. 105328 ◽  
Author(s):  
Maria Di Rosa ◽  
Francesca Meneghini ◽  
Michele Marroni ◽  
Chiara Frassi ◽  
Luca Pandolfi

Sign in / Sign up

Export Citation Format

Share Document