scholarly journals Impacts of Blending Feed Stock Generated Biodiesel on Performance and Emission Parameters of Diesel Engine-Review

Alternative fuels are in demand to overcome limitations of fossil fuels since decades. Indian Standards of biodiesel exists and its wide application is appealed and a National Policy on Bio fuels was implemented by Ministry of New and Renewable Energy. This Paper presents a review of biodiesel, Indian standards and difference of ASTM/EN for biodiesel. Biodiesel and its different blend fuelled in Diesel engine exhibit different engine performance and exhaust gas emission characteristics. Various performance parameters affects compression ignition diesel engine (DI-CI) performance, list includes fuel injection pressure, fuel quantity injected and injection timing, shape of combustion chamber, position and size of injection nozzle hole, fuel spray pattern, etc. Few paramount factors governing DI-CI engine includes various types of biodiesel and its blending with diesel engine. Types of blending are namely mahua, jatropha, karanja, waste cooking oil etc. Authors have blended them with varying percentage with varying fuel injection pressure at different loads. Few have also used alumina as nano additives in mahua biodiesel (B25100Al2O3) to check it effects on performance parameters as well as on emission characteristics. Effect of blending with Karanja, Jatropha, Neem , mahua etc as biodiesel with inclusion of alumina as nano additives are reviewed for related performance parameters (i.e. brake thermal efficiency (BTE), brake specific fuel consumption (BSFC)) and emission characteristics (i.e. CO, HC, NOx) in exhaust gas emission in different conditions for DI-CI Engine performance.

Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


The purpose of this study is to investigate the effect of fuelinjection pressure onhomogeneous charge formation and performanceand emission characteristics of Homogeneous charge compression ignition engine. The fuel injection pressure isone of the primary parameter for improvingthe homogeneity of the mixture and governing the power output and emission characteristics of HCCI engine. In this investigation, diesel fuelwasinjected at different injection pressuresas 2bar, 3bar, 4bar and 5bar respectively throughbyport fuel injector. The experimental investigationsshow that increasing the fuel injection pressure will promote the fuel to penetrate with air and creates well pre mixedair/fuel charge.The result shows, the specific fuel consumption (SFC) of HCCI engine isslightlyhigherthan the SFC of conventional diesel engine.The HCCI engine with 3bar injection pressure operated engine has lower SFC values compared to other injection pressure operated HCCI engine.The brake thermal efficiency of HCCI engine, operated with 3barinjection pressure has maximum BTE values over the other injection pressure operated engine.From theresult, it is observed that HCCI engine has lower smoke density values compared to conventional diesel engine andfurther reducedby increasing the fuel injection pressure. The 3bar injection pressure operated HCCI engine has emitted lower smoke densitycompared to other injection pressure operated HCCI engine. The 3bar injection pressureoperated HCCIengine hasemittedmaximum oxides of nitrogen (NOx) emissions than the other injection pressure operated HCCI engine. Other exhaust emissions of carbon monoxide (CO) and hydrocarbon (HC)emissions are increased when compared toconvention diesel engine


Sign in / Sign up

Export Citation Format

Share Document