scholarly journals Interactive assistant tool for the evaluation of kinematic patterns and EMG signals in patients with a forearm injury

Author(s):  
Fernando C. Jiménez-González ◽  
Dulce Esperanza Torres-Ramírez

Subjective feelings feedbacks are commonly employed by a patient during forearm rehabilitation therapy without real-time data, leading to suboptimal recovery results in some patients. Technological innovations in the field of assisted rehabilitation have enabled the evolution of real-time monitoring systems. In this paper, interactive assistant development is presented as the interface to define the relationship between the kinematics patterns and the electromyographic signals during the forearm rehabilitation routine. Leap Motion (LM) and Shimmer3 EMG sensors read the routine behavior by following the movements that appear on the software. Real-time targets are programmed to lead the necessary forearm movements that the therapist sets to determine the recovery progress. The integration of software and hardware shows a dataset basis on interaction variables such as arm velocity, arm position, performance rate, and electrical muscle pulse. The results obtained from tests show that the system works effectively within a range of movement of 9 to 88 degrees in rotation about the axes, and velocities under 190 mm/s show stable movement representation on software. Finally, the outcomes ranges show an alternative tool to evaluate patients with a forearm injury.

Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


2010 ◽  
Vol 121-122 ◽  
pp. 11-16
Author(s):  
Quan Liu ◽  
Yong Luo ◽  
Hui Li

The microwave vehicle detection can obtain real-time conditions of road traffic flow fast, accurate and convenient. In this study, we took the expressway traffic flow in Chengdu as the research object, collecting real-time data of traffic flow, speed and vehicle density to analyses the relationship among Q, V, K graphically. Finally the service level in different lanes and speed in the Third Ring Road were evaluated through Q, V, K data calculations and analysis in Chengdu’s expressway at the traffic peak time.


2013 ◽  
Vol 385-386 ◽  
pp. 683-686
Author(s):  
Hai Yan Song ◽  
Ji Tao Chen ◽  
Wei Li Sun ◽  
Yuan Yuan Li

Electro-hydraulic controlling drill rig has played a very important role nowadays in drilling program. The design of monitor system for JD15 electro-hydraulic controlling drill rig, and the functional requirements of different parts, including real time data acquisition, processing and output, real-time monitoring and display of parameters, have been studied according to the actual demand of monitor system, and additionally, the design puts forward relevant thoughts about the system in the way of computer software and hardware.


2009 ◽  
Vol 14 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Ulrich W. Ebner-Priemer ◽  
Timothy J. Trull

Convergent experimental data, autobiographical studies, and investigations on daily life have all demonstrated that gathering information retrospectively is a highly dubious methodology. Retrospection is subject to multiple systematic distortions (i.e., affective valence effect, mood congruent memory effect, duration neglect; peak end rule) as it is based on (often biased) storage and recollection of memories of the original experience or the behavior that are of interest. The method of choice to circumvent these biases is the use of electronic diaries to collect self-reported symptoms, behaviors, or physiological processes in real time. Different terms have been used for this kind of methodology: ambulatory assessment, ecological momentary assessment, experience sampling method, and real-time data capture. Even though the terms differ, they have in common the use of computer-assisted methodology to assess self-reported symptoms, behaviors, or physiological processes, while the participant undergoes normal daily activities. In this review we discuss the main features and advantages of ambulatory assessment regarding clinical psychology and psychiatry: (a) the use of realtime assessment to circumvent biased recollection, (b) assessment in real life to enhance generalizability, (c) repeated assessment to investigate within person processes, (d) multimodal assessment, including psychological, physiological and behavioral data, (e) the opportunity to assess and investigate context-specific relationships, and (f) the possibility of giving feedback in real time. Using prototypic examples from the literature of clinical psychology and psychiatry, we demonstrate that ambulatory assessment can answer specific research questions better than laboratory or questionnaire studies.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

2017 ◽  
Vol 68 (10) ◽  
pp. 2224-2227 ◽  
Author(s):  
Camelia Gavrila

The aim of this paper is to determine a mathematical model which establishes the relationship between ozone levels together with other meteorological data and air quality. The model is valid for any season and for any area and is based on real-time data measured in Bucharest and its surroundings. This study is based on research using artificial neural networks to model nonlinear relationships between the concentration of immission of ozone and the meteorological factors: relative humidity (RH), global solar radiation (SR), air temperature (TEMP). The ozone concentration depends on following primary pollutants: nitrogen oxides (NO, NO2), carbon monoxide (CO). To achieve this, the Levenberg-Marquardt algorithm was implemented in Scilab, a numerical computation software. Performed sensitivity tests proved the robustness of the model and its applicability in predicting the ozone on short-term.


Sign in / Sign up

Export Citation Format

Share Document