scholarly journals Orexin neuron activity in mating mice - a pilot study

2021 ◽  
Vol 3 ◽  
pp. e17
Author(s):  
Denis Burdakov ◽  
Mahesh Karnani

Mating behaviours affect hypothalamic orexin/hypocretin neurons and vice versa. However, activity of orexin neurons has not been recorded during mating before. We report an anecdotal dataset of freely-moving miniature microscope recordings of orexin neuron activity during mating behaviours, as well as an oral sexual encounter previously undocumented in mice. Across the orexin neuron population in the male, firing rates were maximally diverse during ejaculation, similarly diverse though weaker during intromission, and inverse to this during anterior thrusting. In the female mouse, orexin neurons tended to decrease firing during intromission after a transient increase. We provide this brief dataset for re-use, to enable further studies of these rare behaviours with challenging surgical preparations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah B. Elam ◽  
Stephanie M. Perez ◽  
Jennifer J. Donegan ◽  
Daniel J. Lodge

AbstractPost-traumatic stress disorder (PTSD) is a prevalent condition affecting approximately 8% of the United States population and 20% of United States combat veterans. In addition to core symptoms of the disorder, up to 64% of individuals diagnosed with PTSD experience comorbid psychosis. Previous research has demonstrated a positive correlation between symptoms of psychosis and increases in dopamine transmission. We have recently demonstrated projections from the paraventricular nucleus of the thalamus (PVT) to the nucleus accumbens (NAc) can regulate dopamine neuron activity in the ventral tegmental area (VTA). Specifically, inactivation of the PVT leads to a reversal of aberrant dopamine system function and psychosis-like behavior. The PVT receives dense innervation from orexin containing neurons, therefore, targeting orexin receptors may be a novel approach to restore dopamine neuron activity and alleviate PTSD-associated psychosis. In this study, we induced stress-related pathophysiology in male Sprague Dawley rats using an inescapable foot-shock procedure. We observed a significant increase in VTA dopamine neuron population activity, deficits in sensorimotor gating, and hyperresponsivity to psychomotor stimulants. Administration of selective orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) antagonists (SB334867 and EMPA, respectively) or the FDA-approved, dual-orexin receptor antagonist, Suvorexant, were found to reverse stress-induced increases in dopamine neuron population activity. However, only Suvorexant and SB334867 were able to reverse deficits in behavioral corelates of psychosis. These results suggest that the orexin system may be a novel pharmacological target for the treatment of comorbid psychosis related to PTSD.


2009 ◽  
Vol 38 (5) ◽  
pp. 371-376 ◽  
Author(s):  
M.A. Cruz-Aguilar ◽  
I. Ramírez-Salado ◽  
R.V. Arenas-Rosas ◽  
A.M. Santillán-Doherty ◽  
J.I. Muñoz-Delgado

2021 ◽  
Vol 8 (01) ◽  
Author(s):  
Michele Lacerenza ◽  
Lorenzo Spinelli ◽  
Mauro Buttafava ◽  
Alberto Dalla Mora ◽  
Franco Zappa ◽  
...  

2018 ◽  
Author(s):  
Baris N. Ozbay ◽  
Gregory L. Futia ◽  
Ming Ma ◽  
Victor M. Bright ◽  
Juliet T. Gopinath ◽  
...  

AbstractWe present a miniature head mounted two-photon fiber-coupled microscope (2P-FCM) for neuronal imaging with active axial focusing enabled using a miniature electrowetting lens. Full three-dimensional two-photon imaging of GCaMP6s showing individual neuron activity in multiple focal planes was achieved in a freely-moving mouse. Two-color simultaneous imaging of GFP and tdTomato fluorescence is also demonstrated. Additionally, dynamic control of the axial scanning of the electrowetting lens allows tilting of the focal plane enabling cells in multiple focal planes to be imaged simultaneously. Two-photon imaging allows increased penetration depth in tissue yielding a working distance of 450 μm with an additional 180 μm of active axial focusing. The objective NA is 0.45 with a lateral resolution of 1.8 μm, an axial resolution of 10 μm, and a field-of-view of 240 μm diameter. The 2P-FCM has a weight of only ∼2.5 g and is capable of repeatable and stable head-attachment. The 2P-FCM with dynamic axial scanning provides a new capability to record from functionally distinct neuronal layers, opening new opportunities in neuroscience research.


Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2387-2399 ◽  
Author(s):  
Shel-Hwa Yeo ◽  
Allan E. Herbison

The important role of kisspeptin neurons in the regulation of GnRH neuron activity is now well accepted. However, the ways in which kisspeptin neurons located in the arcuate nucleus (ARN) and rostral periventricular area of the third ventricle (RP3V) control GnRH neurons are poorly understood. The present study used anterograde and retrograde tracing techniques to establish the neuronal projection patterns of kisspeptin cell populations in the female mouse brain. Anterograde tracing studies revealed that kisspeptin neurons in the ARN innervated a wide number of hypothalamic and associated limbic region nuclei, whereas RP3V kisspeptin neurons projected to a smaller number of mostly medially located hypothalamic nuclei. Retrograde tracing confirmed a major projection of RP3V kisspeptin neurons to the ARN and showed that kisspeptin neurons located in the rostral half of the ARN projected to the rostral preoptic area. Peripheral administration of Fluorogold was found to label the majority of GnRH neurons but no kisspeptin neurons. Together, these studies highlight the complexity of the brain kisspeptin neuronal system and indicate that both ARN and RP3V kisspeptin neurons participate in a variety of limbic functions. In relation to the GnRH neuronal network, these investigations demonstrate that, alongside the RP3V kisspeptin cells, rostral ARN kisspeptin neurons may also project to GnRH neuron cell bodies. However, no kisspeptin neurons innervate GnRH nerve terminals in the external layer of the median eminence. These studies provide a neuroanatomical framework for the further elucidation of the functions of the ARN and RP3V kisspeptin neuron populations.


2011 ◽  
Vol 31 (31) ◽  
pp. 11376-11386 ◽  
Author(s):  
A. J. Grossberg ◽  
X. Zhu ◽  
G. M. Leinninger ◽  
P. R. Levasseur ◽  
T. P. Braun ◽  
...  

2002 ◽  
Vol 87 (6) ◽  
pp. 2734-2740 ◽  
Author(s):  
Donald Robertson ◽  
Bardia Paki

Previously reported changes in the gross sound-evoked cochlear potentials after intracochlear perfusion of nimodipine suggest that dihydropyridine-sensitive Ca2+ channels (L-type) control the sound-evoked release of transmitter from the inner hair cells of the mammalian cochlea. In the present study, we combined recording of the action potentials of single primary auditory afferent neurons with intracochlear perfusion to further investigate the role of voltage-gated Ca2+ channels at this synapse. Spontaneous action potential firing rates were depressed by the L-type channel blocker nimodipine, but were elevated by S(−) BAY K8644, an L-type channel agonist. Sound-evoked responses of single primary afferents were depressed by nimodipine in a manner that was consistent with a block at the inner hair cell-afferent dendrite synapse. Perfusions with solutions containing the N-type channel blocker conotoxin GVIA did not differ in their effects from control artificial perilymph perfusions. The results extend the conclusions of the earlier study by showing that L-type Ca2+channels are primarily responsible for controlling both spontaneous and sound-evoked transmitter release from inner hair cells. In addition it was found that afferent neurons with widely different spontaneous firing rates were all sensitive to nimodipine and to BAY K8644, suggesting that the multiple synaptic outputs of each inner hair cell are under the control of only one major type of Ca2+ channel.


2021 ◽  
Author(s):  
Aleisha M Moore ◽  
Lique M Coolen ◽  
Michael N Lehman

A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is comprised of arcuate 'KNDy' cells, the abbreviation based on co-expression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as 'leaders' and others as 'followers' during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy leader from follower cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.


Sign in / Sign up

Export Citation Format

Share Document