scholarly journals Inflammation-Induced Lethargy Is Mediated by Suppression of Orexin Neuron Activity

2011 ◽  
Vol 31 (31) ◽  
pp. 11376-11386 ◽  
Author(s):  
A. J. Grossberg ◽  
X. Zhu ◽  
G. M. Leinninger ◽  
P. R. Levasseur ◽  
T. P. Braun ◽  
...  
2021 ◽  
Vol 3 ◽  
pp. e17
Author(s):  
Denis Burdakov ◽  
Mahesh Karnani

Mating behaviours affect hypothalamic orexin/hypocretin neurons and vice versa. However, activity of orexin neurons has not been recorded during mating before. We report an anecdotal dataset of freely-moving miniature microscope recordings of orexin neuron activity during mating behaviours, as well as an oral sexual encounter previously undocumented in mice. Across the orexin neuron population in the male, firing rates were maximally diverse during ejaculation, similarly diverse though weaker during intromission, and inverse to this during anterior thrusting. In the female mouse, orexin neurons tended to decrease firing during intromission after a transient increase. We provide this brief dataset for re-use, to enable further studies of these rare behaviours with challenging surgical preparations.


2018 ◽  
Vol 9 ◽  
Author(s):  
Idris A. Azeez ◽  
Federico Del Gallo ◽  
Luigia Cristino ◽  
Marina Bentivoglio

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah B. Elam ◽  
Stephanie M. Perez ◽  
Jennifer J. Donegan ◽  
Daniel J. Lodge

AbstractPost-traumatic stress disorder (PTSD) is a prevalent condition affecting approximately 8% of the United States population and 20% of United States combat veterans. In addition to core symptoms of the disorder, up to 64% of individuals diagnosed with PTSD experience comorbid psychosis. Previous research has demonstrated a positive correlation between symptoms of psychosis and increases in dopamine transmission. We have recently demonstrated projections from the paraventricular nucleus of the thalamus (PVT) to the nucleus accumbens (NAc) can regulate dopamine neuron activity in the ventral tegmental area (VTA). Specifically, inactivation of the PVT leads to a reversal of aberrant dopamine system function and psychosis-like behavior. The PVT receives dense innervation from orexin containing neurons, therefore, targeting orexin receptors may be a novel approach to restore dopamine neuron activity and alleviate PTSD-associated psychosis. In this study, we induced stress-related pathophysiology in male Sprague Dawley rats using an inescapable foot-shock procedure. We observed a significant increase in VTA dopamine neuron population activity, deficits in sensorimotor gating, and hyperresponsivity to psychomotor stimulants. Administration of selective orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) antagonists (SB334867 and EMPA, respectively) or the FDA-approved, dual-orexin receptor antagonist, Suvorexant, were found to reverse stress-induced increases in dopamine neuron population activity. However, only Suvorexant and SB334867 were able to reverse deficits in behavioral corelates of psychosis. These results suggest that the orexin system may be a novel pharmacological target for the treatment of comorbid psychosis related to PTSD.


Sign in / Sign up

Export Citation Format

Share Document