in vivo calcium imaging
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 48)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 225 (1) ◽  
Author(s):  
Madeleine S. Junkins ◽  
Sviatoslav N. Bagriantsev ◽  
Elena O. Gracheva

ABSTRACT Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.


2021 ◽  
Author(s):  
Ambra Masuzzo ◽  
Gerard Maniere ◽  
Yael Grosjean Grosjean ◽  
Leopold Kurz ◽  
Julien Royet

Probing the external world is essential for eukaryotes to distinguish beneficial from pathogenic microorganisms. If it is clear that this task falls to the immune cells, recent work shows that neurons can also detect microbes, although the molecules and mechanisms involved are less characterized. In Drosophila, detection of bacteria-derived peptidoglycan by pattern recognition receptor (PRR) of the PGRP family expressed in immune cells, triggers NF-kB/IMD dependent signaling. We show here that one PGRP protein, called PGRP-LB, is expressed in some proboscis's bitter taste neurons. In vivo calcium imaging reveals that the PGRP/IMD pathway is cell-autonomously required in these neurons to transduce the PGN signal. We finally show that NF-kB/IMD pathway activation in bitter neurons influences fly behavior. This demonstrates that flies use the same bacterial elicitor and signaling module to sense bacterial presence via the peripheral nervous system and trigger an anti-bacterial response in immune-competent cells.


2021 ◽  
Author(s):  
Ryan WS Wee ◽  
Karyna Mishchanchuk ◽  
Rawan AlSubaie ◽  
Andrew F MacAskill

Hunger is an internal state that not only invigorates behaviour towards feeding, but also acts as a contextual cue for the higher-order control of anticipatory feeding-related behaviour. The ventral hippocampus is a brain region important in encoding context, but how internal contexts such as hunger are represented in hippocampal circuits is not known. Pyramidal neurons in the ventral hippocampus, and in particular within the ventral CA1/subiculum border (vS) express the receptor for the peripheral hunger hormone ghrelin, and ghrelin is known to cross the blood brain barrier and directly influence hippocampal circuitry. However, what role vS neurons play during feeding related behaviour, and how ghrelin influences this role has not been directly investigated. In this study, we used a combination of whole-cell electrophysiology, optogenetics and molecular knockdown together with in vivo calcium imaging in mice to investigate the role of vS during feeding behaviour across different states of hunger. We found that activity of a unique subpopulation of vS neurons that project to the nucleus accumbens (vS-NAc) were active specifically when animals approached and investigated food, and that that this activity inhibited the transition to begin eating. Increases in peripheral ghrelin reduced vS-NAc activity during this anticipatory phase of feeding behaviour, by increasing the influence of synaptic inhibition. Furthermore, this effect required postsynaptic GHSR1a expression in vS-NAc neurons, suggesting a direct role of ghrelin signalling. Consistent with this role of hippocampal ghrelin signalling, removal of GHSR1a from vS-NAc neurons impaired ghrelin-induced changes in feeding-related behaviour. Together, these experiments define a ghrelin-sensitive hippocampal circuit that informs the decision to eat based on internal state.


2021 ◽  
Author(s):  
Aleisha M Moore ◽  
Lique M Coolen ◽  
Michael N Lehman

A hypothalamic pulse generator located in the arcuate nucleus controls episodic release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) and is essential for reproduction. Recent evidence suggests this generator is comprised of arcuate 'KNDy' cells, the abbreviation based on co-expression of kisspeptin, neurokinin B, and dynorphin. However, direct visual evidence of KNDy neuron activity at a single-cell level during a pulse is lacking. Here, we use in vivo calcium imaging in freely moving female mice to show that individual KNDy neurons are synchronously activated in an episodic manner, and these synchronized episodes always precede LH pulses. Furthermore, synchronization among KNDy cells occurs in a temporal order, with some subsets of KNDy cells serving as 'leaders' and others as 'followers' during each synchronized episode. These results reveal an unsuspected temporal organization of activation and synchronization within the GnRH pulse generator, suggesting that different subsets of KNDy neurons are activated at pulse onset than afterward during maintenance and eventual termination of each pulse. Further studies to distinguish KNDy leader from follower cells is likely to have important clinical significance, since regulation of pulsatile GnRH secretion is essential for normal reproduction and disrupted in pathological conditions such as polycystic ovary syndrome and hypothalamic amenorrhea.


2021 ◽  
Vol 41 (41) ◽  
pp. 8494-8507
Author(s):  
Hirotake Ishida ◽  
Yan Zhang ◽  
Ruben Gomez ◽  
John Shannonhouse ◽  
Hyeonwi Son ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mineki Oguchi ◽  
Jiang Jiasen ◽  
Toshihide W. Yoshioka ◽  
Yasuhiro R. Tanaka ◽  
Kenichi Inoue ◽  
...  

AbstractIn vivo calcium imaging with genetically encoded indicators has recently been applied to macaque brains to monitor neural activities from a large population of cells simultaneously. Microendoscopic calcium imaging combined with implantable gradient index lenses captures neural activities from deep brain areas with a compact and convenient setup; however, this has been limited to rodents and marmosets. Here, we developed miniature fluorescent microscopy to image neural activities from the primary visual cortex of behaving macaques. We found tens of clear fluorescent signals from three of the six brain hemispheres. A subset of these neurons showed clear retinotopy and orientation tuning. Moreover, we successfully decoded the stimulus orientation and tracked the cells across days. These results indicate that microendoscopic calcium imaging is feasible and reasonable for investigating neural circuits in the macaque brain by monitoring fluorescent signals from a large number of neurons.


2021 ◽  
Author(s):  
Hannah S Wirtshafter ◽  
John F Disterhoft

Calcium imaging using GCaMP calcium indicators and miniature microscopes has been used to image cellular populations during long timescales and in different task phases, as well as to determine neuronal circuit topology and organization. Because the hippocampus (HPC) is essential for many tasks of memory, spatial navigation, and learning, calcium imaging of large populations of HPC neurons can provide new insight on cell changes and organization over time during these tasks. To our knowledge, all reported HPC in vivo calcium imaging experiments have been done in mouse. However, rats have many behavioral and physiological experimental advantages over mice, and, due to their larger size, rats are able to support larger implants, thereby enabling the recording of a greater number of cells. In this paper, we present the first in vivo calcium imaging from CA1 hippocampus in freely moving rats. Using GCaMP7c and the UCLA Miniscope, we demonstrate that hundreds of cells (mean 240+-90 cells per session, maximum 428 cells) can reliably be visualized and held across weeks, and that calcium events in these cells are correlated with periods of movement. We additionally show proof of method by showing that an extremely high percent of place cells (82.3%+-8.1%, far surpassing the percent seen during mouse calcium imaging) can be recorded on a navigational task, and that these place cells enable accurately decoding of animal position. Finally, we show that calcium imaging is rats is not prone to photobleaching during hour-long recordings and that cells can be reliably recorded for an hour or more per session. A detailed protocol for this technique, including notes on the numerous parameter changes needed to use Ca2+ in rats, is included in the Materials and Methods section, and implications of these advancements are discussed.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0023-21.2021
Author(s):  
Gwendolin Schoenfeld ◽  
Stefano Carta ◽  
Peter Rupprecht ◽  
Asli Ayaz ◽  
Fritjof Helmchen

2021 ◽  
Author(s):  
Kei Kimura ◽  
Yuji Nagai ◽  
Gaku Hatanaka ◽  
Yang Fang ◽  
Andi Zheng ◽  
...  

Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel AAV vector of which capsid was composed of capsid proteins derived from the serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for the AAV1 vector) and neuron specificity (for the AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Inbal Ben-Ami Bartal ◽  
Jocelyn M Breton ◽  
Huanjie Sheng ◽  
Kimberly LP Long ◽  
Stella Chen ◽  
...  

Prosocial behavior, in particular helping others in need, occurs preferentially in response to distress of one’s own group members. In order to explore the neural mechanisms promoting mammalian helping behavior, a discovery-based approach was used here to identify brain-wide activity correlated with helping behavior in rats. Demonstrating social selectivity, rats helped others of their strain (‘ingroup’), but not rats of an unfamiliar strain (‘outgroup’), by releasing them from a restrainer. Analysis of brain-wide neural activity via quantification of the early-immediate gene c-Fos identified a shared network, including frontal and insular cortices, that was active in the helping test irrespective of group membership. In contrast, the striatum was selectively active for ingroup members, and activity in the nucleus accumbens, a central network hub, correlated with helping. In vivo calcium imaging showed accumbens activity when rats approached a trapped ingroup member, and retrograde tracing identified a subpopulation of accumbens-projecting cells that was correlated with helping. These findings demonstrate that motivation and reward networks are associated with helping an ingroup member and provide the first description of neural correlates of ingroup bias in rodents.


Sign in / Sign up

Export Citation Format

Share Document