Characteristic Analysis of AMT Automatic Transmission

2020 ◽  
Vol 2 (2) ◽  
pp. 39-42
Author(s):  
Xu Yaqing
Author(s):  
Erlie Wang ◽  
Huiyan Chen ◽  
Gang Tao ◽  
Xianhui Wang ◽  
Hongliang Wang

Estimation of the oil hydraulic pressure for the gear-shift elements can be useful for the development of closed-loop control of the automatic transmission fitted to a heavy off-highway vehicle for a good gear-shift quality, to reduce the dissipated energy and the vehicular shift jerk in complex working conditions. The unified dynamic model for a three-degree-of-freedom planetary automatic transmission is presented, and the power-on upshift from first gear to second gear is considered as an example. The unified model is more efficient than the conventional model for the dynamic analysis; furthermore, it provides a computational method for the inertia of the transmission when in gear. From a phased characteristic analysis, real-time estimation of the oil pressure for the gear-shift elements in the sliding process, i.e. the torque phase and the inertia phase, is addressed; then the improved control scheme for the power-on upshift from first gear to second gear is developed and validated using a heavy off-highway vehicle equipped with a high-power full-range speed-regulating diesel engine. The experimental results show that the model-based oil pressure estimation is able to reflect the dynamic characteristics of the system in changing conditions, and the corresponding control strategy can improve the gear-shift quality and the vehicular performance effectively.


2007 ◽  
Vol 177 (4S) ◽  
pp. 612-612
Author(s):  
Motoo Araki ◽  
Po N. Lam ◽  
Daniel J. Culkin ◽  
Pamela E. Fox ◽  
Glenn M. Sulley ◽  
...  

2008 ◽  
Vol 128 (12) ◽  
pp. 1373-1380
Author(s):  
Satoshi Sugahara ◽  
Kouhei Yamada ◽  
Haruhiko Nishio ◽  
Masaharu Edo ◽  
Toshiro Sato ◽  
...  

2019 ◽  
Vol 7 (SI-TeMIC18) ◽  
Author(s):  
Norhanifah Abdul Rahman ◽  
Matzaini Katon Katon ◽  
Nurina Alya Zulkifli Zulkifli

Automatic Transmission (AT) system is efficient in the aspects of vehicle safety, comfort, reliability and driving performance. The objectives of this paper are to collect the oil samples from AT systems of engine bus according to manufacturer's recommendations and analyse collected oil samples using oil analysis technique. The sample transmission fluid which was taken from the AT gearbox has been experimentally analyzed. The oil samples were taken with an interval of 5,000km, 30,000km, 50,000km, 80,000km, 180,000km and 300,000km for AT bus operation. These samples then have been analyzed by comparing between new and used transmission fluid using Fourier Transform Infrared (FTIR) spectroscopy. Oil analysis by FTIR is a form of Predictive Maintenance (PdM) to avoid major failure in machine elements. Most machine elements are not easily accessible in the transmission system. Having a reliable technique would avoid the needs to open the components unnecessarily, hence, help to prevent catastrophic failure which are very costly, and ease of regular monitoring. In order to identify the major failures of automatic gearbox, forecasts can be made regarding the lube transmission fluid analysis test. By using this test, the minor problems can be determined before they become major failures. At the end of this research, the wear particles profile for interval mileage of AT system was obtained. Keywords: Wear, Automatic Transmission (AT), Transmission fluid, Fourier Transform Infrared (FTIR), Oil analysis.


2019 ◽  
Vol 45 (1) ◽  
pp. 10
Author(s):  
Jia-Yu YAO ◽  
Li-Wu ZHANG ◽  
Jie ZHAO ◽  
Yi XU ◽  
Jian-Min QI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document