scholarly journals Example of internal function for Sponge scheme built on the basis of the generalized AES design methodology

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 89-95
Author(s):  
R. M. Ospanov ◽  
Ye. N. Seitkulov ◽  
B. B. Yergaliyeva ◽  
N. M. Sisenov

The purpose of this article is to construct an internal function underlying the “Sponge” scheme for constructing  cryptographic  hash  functions.  An  internal  function in  the  “Sponge”  scheme  is  a  fixed-length transformation  or  permutation  that  operates  on  a  fixed  number  of  bits  that  make  up  the  internal  state  of  the function. There are various constructive approaches to functiondesign. The most common approach is to use a permutation based on a symmetric block encryption algorithm with constants as the key. This article builds an internal  function  using  the  generalized  AES  design  methodology. This  methodology  makes  it  easy  to  design block  ciphers  to  encrypt  large  blocks  of  plaintext  with  small  components,  representing  the  processed  data as  multidimensional  arrays.  The  internal  function  is  a  block  cipher  that  processes  2048  bits,  represented as  a  9-dimensional  array  of  512  4-bit  elements  with  size  2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2.  Each  round of encryption  consists  of  three  transformations  (S-blocks,  linear  transformation,  and  permutation),  similar  to the three round transformations of AES SubBytes, MixColumns, and ShiftRows. The constructed function can be used as an internal function in the modified “Sponge” schemefor constructing cryptographic hash functions.

Author(s):  
Ruslan M. Ospanov ◽  
◽  
Yerzhan N. Seitkulov ◽  
Nurbek M. Sissenov ◽  
Banu B. Yergalieva ◽  
...  

The article discusses a new version of the internal function underlying the perspective modern scheme for constructing cryptographic hash functions Sponge (cryptographic sponge). The considered example of an internal function is similar to the Keccak permutation, but it has a number of main differences. The inner function operates on a 2048-bit state S, which can be viewed as a three-dimensional bit array of 4 x 8 x 64 size. The structure of the internal function is made up of 5 transformations similar to Keccak. However, firstly, in this example, instead of a 5-bit S-box, an 8-bit one is used. In this regard, the parameters of the three-dimensional representation of the state have been changed. Secondly, instead of a linear feedback shift register, a dictionary shift register with ring carry feedback is used to generate round constants. The properties of these transformations are analyzed in the work.


2017 ◽  
Author(s):  
Sankhanil Dey ◽  
Ranjan Ghosh

US defence sponsored the DES program in 1974 and released it in 1977. It remained as a well-known and well accepted block cipher until 1998. Thirty-two 4-bit DES S-Boxes are grouped in eight each with four and are put in public domain without any mention of their design methodology. S-Boxes, 4-bit, 8-bit or 32-bit, find a permanent seat in all future block ciphers. In this paper, while looking into the design methodology of DES S-Boxes, we find that S-Boxes have 128 balanced and non-linear Boolean Functions, of which 102 used once, while 13 used twice and 92 of 102 satisfy the Boolean Function-level Strict Avalanche Criterion. All the S-Boxes satisfy the Bit Independence Criterion. Their Differential Cryptanalysis exhibits better results than the Linear Cryptanalysis. However, no S-Boxes satisfy the S-Box-level SAC analyses. It seems that the designer emphasized satisfaction of Boolean-Function-level SAC and S-Box-level BIC and DC, not the S-Box-level LC and SAC.


2010 ◽  
Vol 23 (3) ◽  
pp. 357-366
Author(s):  
Miodrag Milic ◽  
Vojin Senk

In this paper we present results of uniform logical cryptanalysis method applied to cryptographic hash function CubeHash. During the last decade, some of the most popular cryptographic hash functions were broken. Therefore, in 2007, National Institute of Standards and Technology (NIST), announced an international competition for a new Hash Standard called SHA-3. Only 14 candidates passed first two selection rounds and CubeHash is one of them. A great effort is made in their analysis and comparison. Uniform logical cryptanalysis presents an interesting method for this purpose. Universal, adjustable to almost any cryptographic hash function, very fast and reliable, it presents a promising method in the world of cryptanalysis.


2017 ◽  
Vol 4 ◽  
pp. 82-86
Author(s):  
Dawid Górniak ◽  
Piotr Kopniak

The data is often the most valuable thing that we collect on our computers. Without proper data security with encryption our valuable information may be illegally used by an unauthorised person. The article presents selected encryption methods and hash functions available in Boucy Castle library for Java programming language. The presented analysis applies to measurement of the speed of signature generation and verification. The signatures are for 240 bit encryption algorithms. In case of a hash function, the analysis refers to the speed of such functions. The fastest encryption algorithm and hash function from the research group were AES and SHA1.


Author(s):  
Kannan Balasubramanian

Cryptographic Hash Functions are used to achieve a number of Security goals like Message Authentication, Message Integrity, and are also used to implement Digital Signatures (Non-repudiation), and Entity Authentication. This chapter discusses the construction of hash functions and the various attacks on the Hash functions. The Message Authentication Codes are similar to the Hash functions except that they require a key for producing the message digest or hash. Authenticated Encryption is a scheme that combines hashing and Encryption. The Various types of hash functions like one-way hash function, Collision Resistant hash function and Universal hash functions are also discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document