scholarly journals Mineralogy, Geochemistry and Genesis of the Luc Yen Noble Spinel Deposit, Vietnam

2019 ◽  
Vol 5 ◽  
pp. 56-69
Author(s):  
K.A. Kuksa ◽  
P.B. Sokolov ◽  
O.Yu. Marakhovskaya ◽  
G.A. Gussias ◽  
W. Brownscombe

The paper presents the detailed mineralogical and petrographic study of spinel-bearing marbles at the Luc Yen deposit, North Vietnam. The LA-ICP-MS analysis of 74 spinel grains, combined with mineralogical data, allows us to discriminate them into fve types according to mineral assemblages and trace element geochemistry. Forty seven minerals are identifed as inclusions in spinel grains and 38 minerals are described at Luc Yen deposit for the frst time including leonardsenite, tintisite, manasseite, chalcoalumite, cobaltite and spherocobaltite. The mineral assemblages, trace element pattern, and specifc mineral inclusions indicate the involvement of hydrothermal fuids related to magma intrusions in the formation of, at least, two of fve spinel types at the deposit.

Author(s):  
Wenqing Huang ◽  
Pei Ni ◽  
Ting Shui ◽  
Junyi Pan ◽  
Mingsen Fan ◽  
...  

Abstract Primary rubies in the Ailao Shan of Yunnan Province, China, are found in three layers of marble. However, the origin and source rocks of placer rubies in the Yuanjiang area remains unclear. Trace element geochemistry and inclusion mineralogy within these materials can provide information on their petrogenesis and original source. Zircon, rutile, mica group minerals, titanite, and apatite group minerals were the main solid inclusions identified within the placer Yuanjiang rubies, along with other mineral inclusions such as pyrite, pyrrhotite, plagioclase group minerals, and scapolite group minerals. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) measurements showed that the placer rubies are characterized by average values of Mg (31 ppmw), Ti (97 ppmw), V (77 ppmw), Cr (3326 ppmw), Fe (71 ppmw), and Ga (66ppmw). A trace-element oxide diagram, Fe values (<350 ppmw), and the mineral inclusion assemblage suggest marble sources for the placer ruby. Therefore, the Yuanjiang rubies (both primary and placer) are metamorphic, and this fits well with the observations that skarn and related minerals are mostly absent in this deposit. Yuanjiang rubies can be readily separated from the high-iron rubies of different geological types by their Fe content (<1000 ppmw). The discriminators Mg, Ga, Cr, V, Fe, and Ti have potential in separating Yuanjiang rubies from some other marble-hosted deposits, such as Snezhnoe. Nevertheless, geographic origin determination remains a challenge when considering the similarities in compositional features between the Yuanjiang rubies and rubies from some other marble-hosted deposits worldwide (e.g., Luc Yen). The presence of kaolinite group minerals and clusters of euhedral, prismatic zircon crystals in ruby suggest a Yuanjiang origin.


2004 ◽  
Vol 21 (07) ◽  
pp. 159-167
Author(s):  
C. Bertram ◽  
R. Brandt ◽  
N. Jakubowski ◽  
M. Amend

2007 ◽  
Vol 155 (6) ◽  
pp. 791-806 ◽  
Author(s):  
Marieke Van Lichtervelde ◽  
Michel Grégoire ◽  
Robert L. Linnen ◽  
Didier Béziat ◽  
Stefano Salvi

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 743 ◽  
Author(s):  
Irina Melekestseva ◽  
Valery Maslennikov ◽  
Gennady Tret’yakov ◽  
Svetlana Maslennikova ◽  
Leonid Danyushevsky ◽  
...  

The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the mode of TE occurrence, in sulfides is important, since they are potential sources for byproduct TEs. Isocubanite has the highest Co contents). Chalcopyrite concentrates most Au. Bornite has the highest amounts of Se, Sn, and Te. Crystalline pyrite is a main carrier of Mn. Covellite after isocubanite is a host to the highest Sr, Ag, and Bi contents. Covellite after pyrite accumulates V, Ga and In. The isocubanite+chalcopyrite aggregates in altered gabrro contain the highest amounts of Ni, Zn, As, Mo, Cd, Sb (166 ppm), Tl, and Pb. The trace element geochemistry of sulfides is mainly controlled by local formation conditions. Submarine oxidation results in the formation of covellite and its enrichment in most trace elements relative to primary sulfides. This is a result of incorporation of seawater-derived elements and seawater-affected dissolution of accessory minerals (native gold, galena and clausthalite).


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 773
Author(s):  
Alexandre V. Andronikov ◽  
Irina E. Andronikova ◽  
Tamara Sidorinova

Sulfides in upper mantle lherzolite xenoliths from Cretaceous alkaline-ultramafic rocks in the Jetty Peninsula (East Antarctica) were studied for their major and trace-element compositions using SEM and LA-ICP-MS applied in situ. Modal abundance of sulfides is the lowest in Cpx-poor lherzolites ≤ Spl-Grt lherzolites << Cpx-rich lherzolites. Most sulfides are either interstitial (i-type) or inclusions in rock-forming minerals (e-type) with minor sulfide phases mostly present in metasomatic veinlets and carbonate-silicate interstitial patches (m-type). The main sulfide assemblage is pentlandite + chalcopyrite ± pyrrhotite; minor sulfides are polydymite, millerite, violarite, siegenite, and monosulfide solution (mss). Sulfide assemblages in the xenolith matrix are a product of the subsolidus re-equilibration of primary mss at temperatures below ≤300 °C. Platinum group elements (PGE) abundances suggest that most e-type sulfides are the residues of melting processes and that the i-type sulfides are crystallization products of sulfide-bearing fluids/liquids. The m-type sulfides might have resulted from low-temperature metasomatism by percolating sulfide-carbonate-silicate fluids/melts. The PGE in sulfide record processes are related to partial melting in mantle and intramantle melt migration. Most other trace elements initially partitioned into interstitial sulfide liquid and later metasomatically re-enriched residual sulfides overprinting their primary signatures. The extent of element partitioning into sulfide liquids depends on P, T, fO2, and host peridotite composition.


Sign in / Sign up

Export Citation Format

Share Document