scholarly journals A Hybrid Software Defined Networking-Based Load Balancing and Scheduling Mechanism for Cloud Data Centers

2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Umniah N. Kadim ◽  
Imad J. Mohammed

Cloud data centers provide various services using efficient and economic infrastructure to facilitate the work of IT providers, companies and different end users. But they may suffer from congestion due to the poor distribution of traffic load among the network links and consequently diminish the network performance. Software defined networking is a modern network technology described as a promising solution for the problem of cloud data center congestion. Software defined networking is distinguished in separating the control plane from the data plane and depends on centralized network control. The current paper introduces an optimized software defined networking-based load balancing and scheduling mechanism called the software defined networking load balance mechanism for cloud data center networks that benefits from the programmable abilities of software defined networking. For the performance evaluation of software defined networking load balance mechanism experiments, a common fat-tree topology is used as a data center network running on Mininet emulator under the ryusdn-controller. The performance results and comparisons of software defined networking load balance mechanism show an improvement in network throughput, link utilization and reduction in round trip time delay.

Load balancing algorithms and service broker policies plays a crucial role in determining the performance of cloud systems. User response time and data center request servicing time are largely affected by the load balancing algorithms and service broker policies. Several load balancing algorithms and service broker polices exist in the literature to perform the data center allocation and virtual machine allocation for the given set of user requests. In this paper, we investigate the performance of equally spread current execution (ESCE) based load balancing algorithm with closest data center(CDC) service broker policy in a cloud environment that consists of homogeneous and heterogeneous device characteristics in data centers and heterogeneous communication bandwidth that exist between different regions where cloud data centers are deployed. We performed a simulation using CloudAnalyst an open source software with different settings of device characteristics and bandwidth. The user response time and data center request servicing time are found considerably less in heterogeneous environment.


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772199721
Author(s):  
Mueen Uddin ◽  
Mohammed Hamdi ◽  
Abdullah Alghamdi ◽  
Mesfer Alrizq ◽  
Mohammad Sulleman Memon ◽  
...  

Cloud computing is a well-known technology that provides flexible, efficient, and cost-effective information technology solutions for multinationals to offer improved and enhanced quality of business services to end-users. The cloud computing paradigm is instigated from grid and parallel computing models as it uses virtualization, server consolidation, utility computing, and other computing technologies and models for providing better information technology solutions for large-scale computational data centers. The recent intensifying computational demands from multinationals enterprises have motivated the magnification for large complicated cloud data centers to handle business, monetary, Internet, and commercial applications of different enterprises. A cloud data center encompasses thousands of millions of physical server machines arranged in racks along with network, storage, and other equipment that entails an extensive amount of power to process different processes and amenities required by business firms to run their business applications. This data center infrastructure leads to different challenges like enormous power consumption, underutilization of installed equipment especially physical server machines, CO2 emission causing global warming, and so on. In this article, we highlight the data center issues in the context of Pakistan where the data center industry is facing huge power deficits and shortcomings to fulfill the power demands to provide data and operational services to business enterprises. The research investigates these challenges and provides solutions to reduce the number of installed physical server machines and their related device equipment. In this article, we proposed server consolidation technique to increase the utilization of already existing server machines and their workloads by migrating them to virtual server machines to implement green energy-efficient cloud data centers. To achieve this objective, we also introduced a novel Virtualized Task Scheduling Algorithm to manage and properly distribute the physical server machine workloads onto virtual server machines. The results are generated from a case study performed in Pakistan where the proposed server consolidation technique and virtualized task scheduling algorithm are applied on a tier-level data center. The results obtained from the case study demonstrate that there are annual power savings of 23,600 W and overall cost savings of US$78,362. The results also highlight that the utilization ratio of already existing physical server machines has increased to 30% compared to 10%, whereas the number of server machines has reduced to 50% contributing enormously toward huge power savings.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chunxia Yin ◽  
Jian Liu ◽  
Shunfu Jin

In recent years, the energy consumption of cloud data centers has continued to increase. A large number of servers run at a low utilization rate, which results in a great waste of power. To save more energy in a cloud data center, we propose an energy-efficient task-scheduling mechanism with switching on/sleep mode of servers in the virtualized cloud data center. The key idea is that when the number of idle VMs reaches a specified threshold, the server with the most idle VMs will be switched to sleep mode after migrating all the running tasks to other servers. From the perspective of the total number of tasks and the number of servers in sleep mode in the system, we establish a two-dimensional Markov chain to analyse the proposed energy-efficient mechanism. By using the method of the matrix-geometric solution, we mathematically estimate the energy consumption and the response performance. Both numerical and simulated experiments show that our proposed energy-efficient mechanism can effectively reduce the energy consumption and guarantee the response performance. Finally, by constructing a cost function, the number of VMs hosted on each server is optimized.


2022 ◽  
Author(s):  
Arezoo Ghasemi ◽  
Abolfazl Toroghi Haghighat ◽  
Amin Keshavarzi

Abstract The process of mapping Virtual Machines (VMs) to Physical Ma- chines (PMs), which is defined as VM placement, affects Cloud Data Centers (DCs) performance. To enhance the performance, optimal placement of VMs regarding conflicting objectives has been proposed in some research, such as Multi-Objective VM reBalance (MOVMrB) and Reinforcement Learning VM reBalance (RLVMrB) in recent years. The MOVMrB algorithm is based on the BBO meta-heuristic algorithm and the RLVMrB algorithm inspired by reinforcement learning, which in both of them the non-dominance method is used to evaluate generated solutions. Although this approach reaches accept- able results, it fails to consider other solutions which are optimal regarding all objectives, when it meets the best solution based on one of these objectives. In this paper, we propose two enhanced multi-objective algorithms, Fuzzy- RLVMrB and Fuzzy-MOVMrB, that are able to consider all objectives when evaluating candidate solutions in solution space. All four algorithms aim to balance the load between VMs in terms of processor, bandwidth, and memory as well as horizontal and vertical load balance. We simulated all algorithms using the CloudSim simulator and compared them in terms of horizontal and vertical load balance and execution time. The simulation results show that Fuzzy-RLVMrB and Fuzzy-MOVMrB algorithms outperform RLVMrB and MOVMrB algorithms in terms of vertical load balancing and horizontal load balancing. Also, the RLVMrB and Fuzzy-RLVMrB algorithms are better in execution time than the MOVMrB and Fuzzy-MOVMrB algorithms.


Author(s):  
Cail Song ◽  
Bin Liang ◽  
Jiao Li

Recently, the virtual machine deployment algorithm uses physical machine less or consumes higher energy in data centers, resulting in declined service quality of cloud data centers or rising operational costs, which leads to a decrease in cloud service provider’s earnings finally. According to this situation, a resource clustering algorithm for cloud data centers is proposed. This algorithm systematically analyzes the cloud data center model and physical machine’s use ratio, establishes the dynamic resource clustering rules through k-means clustering algorithm, and deploys the virtual machines based on clustering results, so as to promote the use ratio of physical machine and bring down energy consumption in cloud data centers. The experimental results indicate that, regarding the compute-intensive virtual machines in cloud data centers, compared to contrast algorithm, the physical machine’s use ratio of this algorithm is improved by 12% on average, and its energy consumption in cloud data center is lowered by 15% on average. Regarding the general-purpose virtual machines in cloud data center, compared to contrast algorithm, the physical machine’s use ratio is improved by 14% on average, and its energy consumption in cloud data centers is lowered by 12% on average. Above results demonstrate that this method shows a good effect in the resource management of cloud data centers, which may provide reference to some extent.


Cloud computing has led to the tremendous growth of IT organizations, which serves as the means of delivering services to large number of consumers globally, by providing anywhere, anytime easy access to resources and services. The primary concern over the increasing energy consumption by cloud data centers is mainly due to the massive emission of greenhouse gases, which contaminate the atmosphere and tend to worsen the environmental conditions. The major part of huge energy consumption comes from large servers, high speed storage devices and cooling equipment, present in cloud data centers. These serve as the basis for fulfilling the increasing need for computing resources. These in turn bestow additional cost of resources. The goal is to focus on energy savings through effective utilization of resources. This necessitates the need for developing a green-aware, energy-efficient framework for cloud data center networks. The Software Defined Networking (SDN) are chosen as they aid in studying the behaviour of networks from the overall perspective of software layer, rather than decisions from each individual device, as in case of conventional networks. The central objective of this paper is dedicated to survey on various existing SDN based energy efficient cloud data center networks.


2020 ◽  
Vol 32 (3) ◽  
pp. 23-36
Author(s):  
Kanniga Devi R. ◽  
Murugaboopathi Gurusamy ◽  
Vijayakumar P.

A Cloud data center is a network of virtualized resources, namely virtualized servers. They provision on-demand services to the source of requests ranging from virtual machines to virtualized storage and virtualized networks. The cloud data center service requests can come from different sources across the world. It is desirable for enhancing Quality of Service (QoS), which is otherwise known as a service level agreement (SLA), an agreement between cloud service requester and cloud service consumer on QoS, to allocate the cloud data center closest to the source of requests. This article models a Cloud data center network as a graph and proposes an algorithm, modified Breadth First Search where the source of requests assigned to the Cloud data centers based on a cost threshold, which limits the distance between them. Limiting the distance between Cloud data centers and the source of requests leads to faster service provisioning. The proposed algorithm is tested for various graph instances and is compared with modified Voronoi and modified graph-based K-Means algorithms that they assign source of requests to the cloud data centers without limiting the distance between them. The proposed algorithm outperforms two other algorithms in terms of average time taken to allocate the cloud data center to the source of requests, average cost and load distribution.


Author(s):  
Poobalan A ◽  
◽  
Sangeetha S ◽  
Shanthakumar P ◽  
◽  
...  

Cloud computing is a promising computing technology utilized in every stage of the business. The cloud offers different services to cloud users from anytime to anywhere, and it is attained with different parameters, like load optimization, resource optimization. Due to the increase in data center, energy consumption has become a major issue in green data centers. The majority of data centers are function using peak load with huge scales. Thus, it is essential for carrying out energy saving in cloud data centers. This paper designed an energy-saving method using fat tree. The proposed techniques optimize the load at different zones of data center and user in the cloud platform. Here, the distribution of load in cloud data centers is performed using Taylor-based Manta Ray Foraging Optimization (Taylor-MRFO), which is an integration of Manta Ray Foraging Optimization (MRFO) and Taylor series. The method utilized different objectives that involve power, load, latency, and bandwidth. With the load distribution, the switching of cloud data center to the desired mode is performed using Actor critic neural network (ACNN). Thus, the dual strategy leads to performance optimization in cloud infrastructure and also in consolidating parallel workload in data centers more effectively. The proposed Taylor-MRFO+ACNN outperformed other methods with minimal energy of 0.553, minimal load of 0.363, and minimal fitness of 0.437, respectively.


Load balancing is an important aspect in cloud to share load among different virtual machines running on various physical nodes. The user response time which is an important performance metric is being highly influenced by the efficient load balancing algorithm for cloud data centers. Virtual machines which are part of the cloud data centers consist of various types of physical devices. The user response time is affected significantly by the capacity of physical devices that exist as part of the data centers. Several load balancing algorithms exist in the literature to allocate task effectively on various virtual machines running in data centers. We investigate the performance of round robin based load balancing algorithm with closest data center as service broker policy in cloud data centers. We have performed a simulation with data centers that consist of devices with different physical characteristics such as memory, storage, bandwidth, processor speed and scheduling policy using Round Robin load balancing algorithm with closest data centers as service broker policy. We present the merits of heterogeneous device characteristics in reducing the user response time and the data center request service time. We used Cloud Analyst, an open source simulation tool for cloud computing environment


Sign in / Sign up

Export Citation Format

Share Document