Orientation and crystal structure of two-dimensional carbon nitride films

2020 ◽  
Vol 59 (8) ◽  
pp. 080907
Author(s):  
Hitoe Habuchi ◽  
Ryosuke Kobayashi
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2460
Author(s):  
Jian Zou ◽  
Mengnan Liu ◽  
Shuyu Tan ◽  
Zhijie Bi ◽  
Yong Wan ◽  
...  

A two-dimensional perovskite photonic crystal structure of Methylamine lead iodide (CH3NH3PbI3, MAPbI3) is rationally designed as the absorption layer for solar cells. The photonic crystal (PC) structure possesses the distinct “slow light” and band gap effect, leading to the increased absorption efficiency of the absorption layer, and thus the increased photoelectric conversion efficiency of the battery. Simulation results indicate that the best absorption efficiency can be achieved when the scattering element of indium arsenide (InAs) cylinder is arranged in the absorption layer in the form of tetragonal lattice with the height of 0.6 μm, the diameter of 0.24 μm, and the lattice constant of 0.4 μm. In the wide wavelength range of 400–1200 nm, the absorption efficiency can be reached up to 82.5%, which is 70.1% higher than that of the absorption layer without the photonic crystal structure. In addition, the absorption layer with photonic crystal structure has good adaptability to the incident light angle, presenting the stable absorption efficiency of 80% in the wide incident range of 0–80°. The results demonstrate that the absorption layer with photonic crystal structure can realize the wide spectrum, wide angle, and high absorption of incident light, resulting in the increased utilization efficiency of solar energy.


EnergyChem ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 100051
Author(s):  
Chuanbiao Bie ◽  
Bei Cheng ◽  
Jiajie Fan ◽  
Wingkei Ho ◽  
Jiaguo Yu

The Analyst ◽  
2021 ◽  
Author(s):  
Qianqian Zhao ◽  
Wenrong Cai ◽  
Bao-Zhu Yang ◽  
Zhengzhi Yin ◽  
Datong Wu ◽  
...  

Well dispersed chiral Ag2S quantum dots (Ag2S QDs) were facilely synthesized by using N-acetyl-L-cysteine (NALC) as the chiral ligand, which were loaded onto the nanosheets of two-dimensional (2D) few-layer carbon...


2021 ◽  
Author(s):  
Vellaichamy Balakumar ◽  
Manivannan Ramalingam ◽  
Chitiphon Chuaicham ◽  
KARTHIKEYAN SEKAR ◽  
K. Sasaki

Hollow porous graphitic carbon nitride (porous CN) was synthesized via a simple tactic method, and the resulting porous CN showed an effectively modified surface area, crystal structure and enhanced photocatalytic...


2016 ◽  
Vol 231 (4) ◽  
pp. 1163-1164
Author(s):  
Yu Youzhu ◽  
Guo Yuhua ◽  
Yang Liguo ◽  
Niu Yongsheng

AbstractC5H5N5O3Ni, monoclinic, C2/c (no. 15), a = 8.5804(17) Å, b = 13.790(3) Å, c = 13.969(3) Å, β = 104.37(3)°, V =1601.2(6)Å3, Z = 8, Rgt(F) = 0.0203, wRref(F2) = 0.0550, T = 293 K.


2014 ◽  
Vol 70 (12) ◽  
pp. o1252-o1252 ◽  
Author(s):  
Rodolfo Moreno-Fuquen ◽  
Diego F. Sánchez ◽  
Javier Ellena

In the title compound, C10H6N4O5S, the mean plane of the non-H atoms of the central amide fragment C—N—C(=O)—C [r.m.s. deviation = 0.0294 Å] forms dihedral angles of 12.48 (7) and 46.66 (9)° with the planes of the thiazole and benzene rings, respectively. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming chains along [001]. In addition, weak C—H...O hydrogen bonds link these chains, forming a two-dimensional network, containingR44(28) ring motifs parallel to (100).


Sign in / Sign up

Export Citation Format

Share Document