scholarly journals Low Cost Health Monitoring Sytem Based on Internet Of Things Using Email Notification

Author(s):  
I Dewa Gede Hari Wisana ◽  
Bedjo Utomo ◽  
Farid Amrinsani ◽  
Era Purwanto

Monitoring activities are needed if there are symptoms of a disease that require quick action so that the patient's condition does not get worse, for that we need a system that can notify doctors so they can take action. The patient monitoring system in hospitals is generally still carried out conventionally, among others, nurses or doctors come to the patient's room to check on the progress of the patient's condition, this will be a problem, if the number of medical personnel and facilities is insufficient to monitor. Patients who need special attention for patient care, such as monitoring the patient's breathing rate. The use of the internet of things (IOT), as a device that can work without the help of people, can perform tasks and provide easier and real time data, so that they can access output directly. The purpose of this research is to design an inexpensive health monitoring tool based on the Internet of Things (Respiration Parameters) using a piezoelectric sensor and an ESP32 Wi-Fi module. From the results of the module design taken from 10 respondents, obtained that the average measurement high accuracy (17.76 + 0.61) and the average level of stability of the design has a magnitude of 0.4 so that it can be concluded that using a piezoelectric sensor in this series can obtain good accuracy. This the design can be used to monitor a person's respiration in real-time

Information ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 146
Author(s):  
Konstantinos Ioannou ◽  
Dimitris Karampatzakis ◽  
Petros Amanatidis ◽  
Vasileios Aggelopoulos ◽  
Ilias Karmiris

Automatic Weather Stations (AWS) are extensively used for gathering meteorological and climatic data. The World Meteorological Organization (WMO) provides publications with guidelines for the implementation, installation, and usages of these stations. Nowadays, in the new era of the Internet of Things, there is an ever-increasing necessity for the implementation of automatic observing systems that will provide scientists with the real-time data needed to design and apply proper environmental policy. In this paper, an extended review is performed regarding the technologies currently used for the implementation of Automatic Weather Stations. Furthermore, we also present the usage of new emerging technologies such as the Internet of Things, Edge Computing, Deep Learning, LPWAN, etc. in the implementation of future AWS-based observation systems. Finally, we present a case study and results from a testbed AWS (project AgroComp) developed by our research team. The results include test measurements from low-cost sensors installed on the unit and predictions provided by Deep Learning algorithms running locally.


2021 ◽  
Vol 46 (1) ◽  
pp. 33-36
Author(s):  
Julie Dugdale ◽  
Mahyar T. Moghaddam ◽  
Henry Muccini

The increasing natural and man-induced disasters such as res, earthquakes, oods, hurricanes, overcrowding, or pandemic viruses endanger human lives. Hence, designing infrastructures to handle those possible crises has become an ever-increasing need. The Internet of Things (IoT) has changed our approach to safety systems by connecting sensors and providing real-time data to managers, rescuers, and endangered people. IoT systems can monitor and react to progressive disasters, people's movements and their behavioral patterns. The community faces challenges in using IoT for crises management: i) how to take advantage of technological advancements and deal with IoT resources installation issues? ii) what environmental contexts should be considered while designing IoT-based emergency handling systems? iii) how should system design comply with various levels of real-time requirements? This paper reports on the results of the First International Workshop on Internet of Things for Emergency Management (IoT4Emergency 2020), which speci cally focuses on challenges and envisioned solutions in using smart connected systems to handle disasters.


Author(s):  
Chang-Gyu Cgseong ◽  
Jung-Yee Kim ◽  
Doo-Jin Park

<p>Recently, the Internet of things(IoT) has received great attention, and the demand for IOT applications in various fields is increasing. But drawbacks of IoT, such as having to use dedicated equipment and having to pay for a flat fee monthly, do not satisfy the consumers’ demands. These shortcomings of IoT is causing the appearance of users who try to design the environment of IoT that responds their demands and naturally, attempts to have monitoring system through open-source hardware like Arduino. Open source hardware has attracted a great deal of attention for the diffusion of the Internet of things as a key element of the Internet construction. The emergence of open source hardware, which has the advantage of low cost and easy and fast development, has made it possible to embody the idea of object Internet application services. In this paper, we design and implement a system that controls the objects in real time using open source hardware and MQTT protocol.</p>


Author(s):  
Satya Narayan Sahu ◽  
Maheswata Moharana ◽  
Purna Chandra Prusti ◽  
Shanta Chakrabarty ◽  
Fahmida Khan ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 31-35
Author(s):  
Lorenzo Carosso ◽  
Luca Mattiauda ◽  
Marco Allegretti

AbstractInformation and Communication Technologies (ICT) have experienced a large application in many fields, such as smart homes, health monitoring, environmental monitoring, and a great number of studies is present in literature. In particular, it is expected that the Internet of Things (IoT) will become increasingly pervasive in everyday life. Among different technologies, devices based on Long Range (LoRa) and LoRaWAN stand out due to their relative low cost, low power consumption and large cover range. In this survey, recent papers investigating applications of LoRa modules have been selected. The different use-cases are presented with a comparison between communication parameters and results obtained.


Author(s):  
Ilyas Potamitis ◽  
Panagiotis Eliopoulos ◽  
Iraklis Rigakis

&Tau;he concept of remote insect surveillance at large spatial scales for a number of serious insect pests of agricultural and medical importance is introduced in a series of our papers. We augment typical, low-cost plastic traps for many insect pests with the necessary optoelectronic sensors to guard the entrance of the trap in order to detect, time-stamp, GPS tag, and &ndash;in relevant cases- identify the species of the incoming insect from their wingbeat. For every important crop pest there are monitoring protocols to be followed in order to decide when to initiate a treatment procedure before a serious infestation occurs. Monitoring protocols are mainly based on specifically designed insect traps. Traditional insect monitoring suffers in that the scope of such monitoring: is curtailed by its cost, requires intensive labor, is time consuming, an expert is often needed for sufficient accuracy and can sometimes raise safety issues for humans. These disadvantages reduce the extent to which manual insect monitoring is applied and therefore its accuracy, which finally results in significant crop loss due to damage caused by pests. With the term &lsquo;surveillance&rsquo; we intend to push the monitoring idea to unprecedented levels of information extraction regarding the presence, time-stamping detection events, species identification and population density of targeted insect pests. Insect counts as well as environmental parameters that correlate with insect&rsquo;s population development are wirelessly transmitted to the central monitoring agency in real time, are visualized and streamed to statistical methods to assist enforcement of security control to insect pests. In this work we emphasize on how the traps can be self-organized in networks that collectively report data at local, regional, country, continental, and global scales using the emerging technology of the Internet of Things (IoT). This research is necessarily interdisciplinary and falls at the intersection of entomology, optoelectronic engineering, data-science and crop science and encompasses the design and implementation of low-cost, low-power technology to help reduce the extent of quantitative and qualitative crop losses by many the most significant agricultural pests. We argue that smart traps communicating through IoT to report in real-time the level of the pest population from the field straight to a human controlled agency can, in the very near future, have a profound impact on the decision making process in crop protection and will be disruptive of existing manual practices. In the present study, three cases are investigated : monitoring Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using a) Picusan and b) Lindgren trap, and c) monitoring various stored grain beetle pests using the pitfall trap.


Sign in / Sign up

Export Citation Format

Share Document