scholarly journals SAPF for Power Quality Improvement Based on PSODE Optimization Algorithm

PQ phenomenon has gain an overwhelming attention in recent years for extensive use of complicated industrial processes. In the modern world, the usage of intelligent algorithms to enhance power quality is increasing gradually as the present day utility system as a linear model is unsatisfactory and ineffective. This paper emphasis on comparative analysis of PSODE with traditional PSO and DE for the harmonic reduction in source current with optimal tuning of proportional integral (PI) controller gain values. The SAPF is dominant among the power quality conditioners used to limit the current variations that are induced in the utility system because of nonlinear loads. The reference current generation is based on PQ theory. The instantaneous switching of voltage source inverter (VSI) is taken care by hysteresis band current controller (HBCC). The pro-effective simulations are implemented in the MATLAB/SIMULINK environment, which even supports the efficacy of the present day power system.

Author(s):  
Miska Prasad ◽  
Ashok Kumar Akella

<p><em>This paper describes the comparative analysis of three different control techniques of distributed flexible AC transmission system (DFACTS) controller called as distributed static synchronous compensator (DSTATCOM), </em><em>aimed at power quality (PQ) enhancement in terms of voltage sag mitigation in a three-phase four-wire (3p4w) distribution system. A DSTATCOM is one of the major power quality improvement devices which consist of a DC energy source, a voltage source inverter (VSI), a filter, a coupling transformer and the control system. The control strategy based on synchronous reference frame (SRF) theory, instantaneous active and reactive current (IARC) theory and propositional-integral (PI) controller has been used for reference current generation of voltage source inverter (VSI) based DSTATCOM. The SRF, IARC and PI control based DSTATCOM is validated through dynamic simulation in a MATLAB\SIMULINK environment under linear as well as nonlinear loads.</em></p>


2018 ◽  
Vol 1 (1) ◽  
pp. 54-66
Author(s):  
Rakan Khalil Antar ◽  
Basil Mohammed Saied ◽  
Rafid Ahmed Khalil

A new control strategy for active power filters is proposed, modeled and implemented in order to improve the power quality of a line commutated converter High voltage DC link. The ability of reactive power and harmonics reductions are generally met by using passive and active power filters. In this paper, modified active power filter with a modified harmonics pulse width modulation algorithm is used to minimize the source harmonics and force the AC supply current to be in the same phase with AC voltage source at both sending and receiving sides of a line commutated converter high voltage DC link. Therefore, it is considered as power factor corrector and harmonics eliminator with random variations in the load current. The modified harmonics pulse width modulation algorithm is applicable for active power filter based on a three-phase five-level and seven-level cascaded H-bridge voltage source inverter. Simulation results show that the suggested modified multilevel active power filters improve total harmonics distortion of both voltage and current with almost unity effective power factor at both AC sides of high voltage DC link. Therefore, modified active power filter is an effective tool for power quality improvement and preferable for line commutated converter high voltage DC link at different load conditions.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1527
Author(s):  
R. Senthil Kumar ◽  
K. Mohana Sundaram ◽  
K. S. Tamilselvan

The extensive usage of power electronic components creates harmonics in the voltage and current, because of which, the quality of delivered power gets affected. Therefore, it is essential to improve the quality of power, as we reveal in this paper. The problems of load voltage, source current, and power factors are mitigated by utilizing the unified power flow controller (UPFC), in which a combination of series and shunt converters are combined through a DC-link capacitor. To retain the link voltage and to maximize the delivered power, a PV module is introduced with a high gain converter, named the switched clamped diode boost (SCDB) converter, in which the grey wolf optimization (GWO) algorithm is instigated for tracking the maximum power. To retain the link-voltage of the capacitor, the artificial neural network (ANN) is implemented. A proper control of UPFC is highly essential, which is achieved by the reference current generation with the aid of a hybrid algorithm. A genetic algorithm, hybridized with the radial basis function neural network (RBFNN), is utilized for the generation of a switching sequence, and the generated pulse has been given to both the series and shunt converters through the PWM generator. Thus, the source current and load voltage harmonics are mitigated with reactive power compensation, which results in attaining a unity power factor. The projected methodology is simulated by MATLAB and it is perceived that the total harmonic distortion (THD) of 0.84% is attained, with almost a unity power factor, and this is validated with FPGA Spartan 6E hardware.


2014 ◽  
Vol 573 ◽  
pp. 690-695
Author(s):  
Ragavan Saravanan ◽  
P.S. Manoharan

The Unified Power Quality Conditioner plays an important role in the constrained delivery of electrical power from a source to an isolated pool of load or from a source to the grid. This article is presented new control approaches for both series and shunt inverter. The proposed control algorithm for series and shunt converters based on FLC and synchronous reference frame theory respectively. The proposed approach eliminates the total harmonic distortions (THD) efficiently, and mitigates sag and swell present in the linear and nonlinear loads.


Sign in / Sign up

Export Citation Format

Share Document