scholarly journals Various Networks Used for ECG Signals, Heart Beats and ECG Feature’s Classification

ECG is a graphical representation of heart’s electrical activity such as electrical reploarization and depolarization of heart. It is an important non- stationary signal which contains the necessary information about the heart functioning so that it can be used to identify different abnormalities in heart beats and also to identify different diseases of human beings. Classification is an important process in ECG signal analysis and cardiac diseases diagnosis process. Different ECG signals as well as ECG parameters such as heart beats, features can be classified according to requirement. In this paper different classification networks have studied. SVM classifier with empirical mode decomposition represented the maximum accuracy of 99.54%. Any optimization technique can be used to increase the accuracy of SVM classifier with suitable decomposition method such as variatinal mode decomposition.

2016 ◽  
Vol 61 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Fei Xu ◽  
Guozheng Yan ◽  
Kai Zhao ◽  
Li Lu ◽  
Zhiwu Wang ◽  
...  

Abstract Studying the complexity of human colonic pressure signals is important in understanding this intricate, evolved, dynamic system. This article presents a method for quantifying the complexity of colonic pressure signals using an entropy measure. As a self-adaptive non-stationary signal analysis algorithm, empirical mode decomposition can decompose a complex pressure signal into a set of intrinsic mode functions (IMFs). Considering that IMF2, IMF3, and IMF4 represent crucial characteristics of colonic motility, a new signal was reconstructed with these three signals. Then, the time entropy (TE), power spectral entropy (PSE), and approximate entropy (AE) of the reconstructed signal were calculated. For subjects with constipation and healthy individuals, experimental results showed that the entropies of reconstructed signals between these two classes were distinguishable. Moreover, the TE, PSE, and AE can be extracted as features for further subject classification.


Author(s):  
A. Cicone ◽  
J. Liu ◽  
H. Zhou

Chemicals released in the air can be extremely dangerous for human beings and the environment. Hyperspectral images can be used to identify chemical plumes, however the task can be extremely challenging. Assuming we know a priori that some chemical plume, with a known frequency spectrum, has been photographed using a hyperspectral sensor, we can use standard techniques such as the so-called matched filter or adaptive cosine estimator, plus a properly chosen threshold value, to identify the position of the chemical plume. However, due to noise and inadequate sensing, the accurate identification of chemical pixels is not easy even in this apparently simple situation. In this paper, we present a post-processing tool that, in a completely adaptive and data-driven fashion, allows us to improve the performance of any classification methods in identifying the boundaries of a plume. This is done using the multidimensional iterative filtering (MIF) algorithm (Cicone et al. 2014 ( http://arxiv.org/abs/1411.6051 ); Cicone & Zhou 2015 ( http://arxiv.org/abs/1507.07173 )), which is a non-stationary signal decomposition method like the pioneering empirical mode decomposition method (Huang et al. 1998 Proc. R. Soc. Lond. A 454, 903. ( doi:10.1098/rspa.1998.0193 )). Moreover, based on the MIF technique, we propose also a pre-processing method that allows us to decorrelate and mean-centre a hyperspectral dataset. The cosine similarity measure, which often fails in practice, appears to become a successful and outperforming classifier when equipped with such a pre-processing method. We show some examples of the proposed methods when applied to real-life problems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanfei Yang ◽  
Mingzhu Xu ◽  
Aimin Liang ◽  
Yan Yin ◽  
Xin Ma ◽  
...  

AbstractIn this study, a wearable multichannel human magnetocardiogram (MCG) system based on a spin exchange relaxation-free regime (SERF) magnetometer array is developed. The MCG system consists of a magnetically shielded device, a wearable SERF magnetometer array, and a computer for data acquisition and processing. Multichannel MCG signals from a healthy human are successfully recorded simultaneously. Independent component analysis (ICA) and empirical mode decomposition (EMD) are used to denoise MCG data. MCG imaging is realized to visualize the magnetic and current distribution around the heart. The validity of the MCG signals detected by the system is verified by electrocardiogram (ECG) signals obtained at the same position, and similar features and intervals of cardiac signal waveform appear on both MCG and ECG. Experiments show that our wearable MCG system is reliable for detecting MCG signals and can provide cardiac electromagnetic activity imaging.


2021 ◽  
pp. 147592172098694
Author(s):  
Zhijian Wang ◽  
Ningning Yang ◽  
Naipeng Li ◽  
Wenhua Du ◽  
Junyuan Wang

Variational mode decomposition provides a feasible method for non-stationary signal analysis, but the method is still not adaptive, which greatly limits the wide application of the method. Therefore, an adaptive spectrum mode extraction method is proposed in this article. The proposed method is mainly composed of spectral segmentation, mode extraction, and feedback adjustment. In the spectral segmentation part, considering the lack of robustness of classical scale space in a strong noise environment, this article proposes a method of fault feature mapping, which solves over-decomposition of variational mode decomposition guided by classical scale space. In the mode extraction part, for insufficient self-adaptability of the single penalty factor in the variational mode decomposition method, this article proposes a method of spectral aggregation factor, which solves multiple penalty factors that conform to different intrinsic modal functions. In the feedback adjustment part, this article proposes the method of transboundary criterion, which makes the result of variational mode decomposition within a preset range. Finally, using dispersion entropy and kurtosis indicators, intrinsic modal function components containing fault frequencies are extracted for envelope spectrum analysis to extract fault characteristic frequencies. In order to verify the effectiveness of the proposed method, the proposed method is applied to simulation signals and bearing fault signals. Comparing the decomposition results of different methods, the conclusion shows that the proposed method is more advantageous for the fault feature extraction of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document