scholarly journals Bit Error Rate Analysis of Cognitive Radio Network in the Presence of Primary Interference

In this paper, Bit Error Rate (BER) of Orthogonal Frequency Division Multiplexing (OFDM) based cognitive radio network is analyzed in the presence of Primary User Interference (PUI). Since, the PUI signal affects only few subcarriers of the OFDM signal, it can be modeled as a sparsity vector. In this network model, half duplex Amplify and Forward (AF) relaying is considered in the absence of direct link. Further, it is assumed that the network is operating in the overlay mode, thus the primary user transmitted signal act as interference at secondary user relay and destination nodes. In this paper, the PUI is mitigated using convex optimization. Bit Error Rate (BER) is analyzed using Quadrature Phase Shift Keying (QPSK) Modulation and Quadrature Amplitude Modulation (16-QAM). Simulation results conclude that after primary interference suppression, the performance of the proposed system is significantly improved.

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1260
Author(s):  
Hyils Sharon Magdalene Antony ◽  
Thulasimani Lakshmanan

Cognitive radio network (CRN) and non-orthogonal multiple-access (NOMA) is a significant system in the 5G wireless communication system. However, the system is an exceptional way for the cognitive users to secure a communication from the interferences in multiple-input multiple-output (MIMO)-NOMA-based cognitive radio network. In this article, a new beamforming technique is proposed to secure an information exchange within the same cells and neighboring cells from all intervened users. The interference is caused by an imperfect spectrum sensing of the secondary users (SUs). The SUs are intended to access the primary channels. At the same time, the primary user also returns to the channel before the SUs access ends. This similar way of accessing the primary channel will cause interference between the users. Thus, we predicted that the impact of interferences would be greatly reduced by the proposed technique, and that the proposed technique would maximize the entire secrecy rate in the 5G-based cognitive radio network. The simulation result provides better evidence for the performance of the proposed technique.


IJIREEICE ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 58-64
Author(s):  
Selvapriya T ◽  
Sharmila S ◽  
Sindhuja M ◽  
Sinthuja V ◽  
Jayasri C

Sign in / Sign up

Export Citation Format

Share Document