scholarly journals Clustering of the Multi-Value Documents based on Probabilistic Features Association Mechanism

It is becoming increasingly difficult to cluster multi-valued data in data mining because of the multiple data interval values of individual functions. Identifying a clustering model that is appropriate for these disguised multi-valued data deployments in data analysis applications is an open problem. To answer this question, this paper proposes a feature selection based on the probabilistic features association mechanism (PFAM). The problem is mainly due to the difficulty in identifying the class information and the multiple values for each individual features. This work explores the problem of unsupervised feature selection through computing the probabilistic association score and multi-value data reformation for effective clustering in multivariate datasets. By minimizing a reformation clustering error, it can conserve together the degree of similarity and the categorization information of the actual data contents. The proposed approach is evaluated the clustering purity and Normalized Mutual Information on multivariate document datasets. The experimental evaluation shows the improvisation of the proposed approach.

2011 ◽  
pp. 1323-1331
Author(s):  
Jeffrey W. Seifert

A significant amount of attention appears to be focusing on how to better collect, analyze, and disseminate information. In doing so, technology is commonly and increasingly looked upon as both a tool, and, in some cases, a substitute, for human resources. One such technology that is playing a prominent role in homeland security initiatives is data mining. Similar to the concept of homeland security, while data mining is widely mentioned in a growing number of bills, laws, reports, and other policy documents, an agreed upon definition or conceptualization of data mining appears to be generally lacking within the policy community (Relyea, 2002). While data mining initiatives are usually purported to provide insightful, carefully constructed analysis, at various times data mining itself is alternatively described as a technology, a process, and/or a productivity tool. In other words, data mining, or factual data analysis, or predictive analytics, as it also is sometimes referred to, means different things to different people. Regardless of which definition one prefers, a common theme is the ability to collect and combine, virtually if not physically, multiple data sources, for the purposes of analyzing the actions of individuals. In other words, there is an implicit belief in the power of information, suggesting a continuing trend in the growth of “dataveillance,” or the monitoring and collection of the data trails left by a person’s activities (Clarke, 1988). More importantly, it is clear that there are high expectations for data mining, or factual data analysis, being an effective tool. Data mining is not a new technology but its use is growing significantly in both the private and public sectors. Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance research, and increase sales. In the public sector, data mining applications initially were used as a means to detect fraud and waste, but have grown to also be used for purposes such as measuring and improving program performance. While not completely without controversy, these types of data mining applications have gained greater acceptance. However, some national defense/homeland security data mining applications represent a significant expansion in the quantity and scope of data to be analyzed. Moreover, due to their security-related nature, the details of these initiatives (e.g., data sources, analytical techniques, access and retention practices, etc.) are usually less transparent.


Author(s):  
J. W. Seifert

A significant amount of attention appears to be focusing on how to better collect, analyze, and disseminate information. In doing so, technology is commonly and increasingly looked upon as both a tool, and, in some cases, a substitute, for human resources. One such technology that is playing a prominent role in homeland security initiatives is data mining. Similar to the concept of homeland security, while data mining is widely mentioned in a growing number of bills, laws, reports, and other policy documents, an agreed upon definition or conceptualization of data mining appears to be generally lacking within the policy community (Relyea, 2002). While data mining initiatives are usually purported to provide insightful, carefully constructed analysis, at various times data mining itself is alternatively described as a technology, a process, and/or a productivity tool. In other words, data mining, or factual data analysis, or predictive analytics, as it also is sometimes referred to, means different things to different people. Regardless of which definition one prefers, a common theme is the ability to collect and combine, virtually if not physically, multiple data sources, for the purposes of analyzing the actions of individuals. In other words, there is an implicit belief in the power of information, suggesting a continuing trend in the growth of “dataveillance,” or the monitoring and collection of the data trails left by a person’s activities (Clarke, 1988). More importantly, it is clear that there are high expectations for data mining, or factual data analysis, being an effective tool. Data mining is not a new technology but its use is growing significantly in both the private and public sectors. Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance research, and increase sales. In the public sector, data mining applications initially were used as a means to detect fraud and waste, but have grown to also be used for purposes such as measuring and improving program performance. While not completely without controversy, these types of data mining applications have gained greater acceptance. However, some national defense/homeland security data mining applications represent a significant expansion in the quantity and scope of data to be analyzed. Moreover, due to their security-related nature, the details of these initiatives (e.g., data sources, analytical techniques, access and retention practices, etc.) are usually less transparent.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 116875-116885 ◽  
Author(s):  
G. S. Thejas ◽  
Sajal Raj Joshi ◽  
S. S. Iyengar ◽  
N. R. Sunitha ◽  
Prajwal Badrinath

2013 ◽  
Vol 22 (04) ◽  
pp. 1350027
Author(s):  
JAGANATHAN PALANICHAMY ◽  
KUPPUCHAMY RAMASAMY

Feature selection is essential in data mining and pattern recognition, especially for database classification. During past years, several feature selection algorithms have been proposed to measure the relevance of various features to each class. A suitable feature selection algorithm normally maximizes the relevancy and minimizes the redundancy of the selected features. The mutual information measure can successfully estimate the dependency of features on the entire sampling space, but it cannot exactly represent the redundancies among features. In this paper, a novel feature selection algorithm is proposed based on maximum relevance and minimum redundancy criterion. The mutual information is used to measure the relevancy of each feature with class variable and calculate the redundancy by utilizing the relationship between candidate features, selected features and class variables. The effectiveness is tested with ten benchmarked datasets available in UCI Machine Learning Repository. The experimental results show better performance when compared with some existing algorithms.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongfang Zhou ◽  
Xiqian Wang ◽  
Yao Zhang

Feature selection is an essential step in data mining. The core of it is to analyze and quantize the relevancy and redundancy between the features and the classes. In CFR feature selection method, they rarely consider which feature to choose if two or more features have the same value using evaluation criterion. In order to address this problem, the standard deviation is employed to adjust the importance between relevancy and redundancy. Based on this idea, a novel feature selection method named as Feature Selection Based on Weighted Conditional Mutual Information (WCFR) is introduced. Experimental results on ten datasets show that our proposed method has higher classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document