scholarly journals Advantages of Spectrally Efficient Frequency Division Multiplexing Over Orthogonal Frequency Division Multiplexing

An analysis on Spectrally Efficient Frequency Division Multiplexing (SEFDM) is contrast with Orthogonal Frequency Division Multiplexing (OFDM) considering the impact on Peak to Average Power Ratio (PAPR) and nonlinearities within fibre. With respect to OFDM the sub-carriers in SEFDM signals are compressed adjacent to each other at a rate of frequency lesser than the symbol rate. At the receiver end we have utilized the Sphere Decoder which is used to recover the data to remunerate the Interference created by the compressed signals (ICI) faced in the system. This research shows the advantages by using SEFDM and evaluates its achievement. PAPR. when compared with OFDM, while effects of non-linear fibres are considered. The use of various formats of modulation going from 4-QAM to 32-QAM, shows that the SEFDM signals have a noteworthy increment in the transmission length with respect to ordinary signals.

Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Qinbiao Yang ◽  
Zulin Wang ◽  
Qin Huang

Orthogonal frequency division multiplexing (OFDM) usually suffers high peak-to-average power ratio (PAPR). As shown in this paper, PAPR becomes even severe for sparse source due to many identical nonzero frequency OFDM symbols. Thus, this paper introduces compressive coded modulation (CCM) in order to restrain PAPR by reducing identical nonzero frequency symbols for sparse source. As a result, the proposed CCM-based OFDM system, together with iterative clipping and filtering, can efficiently restrain the high PAPR for sparse source. Simulation results show that it outperforms about 4 dB over the traditional OFDM system when source sparsity is 0.1.


Sign in / Sign up

Export Citation Format

Share Document