scholarly journals Modified selective mapping scheme with low complexity for minimizing high peak-average power ratio in orthogonal frequency division multiplexing system

2016 ◽  
Author(s):  
Ezmin Abdullah ◽  
Azlina Idris ◽  
Azilah Saparon
Frequenz ◽  
2017 ◽  
Vol 71 (1-2) ◽  
pp. 73-81
Author(s):  
Xiangyin Zhang ◽  
Xiaodong Zhu ◽  
Youxi Tang

Abstract Orthogonal frequency division multiplexing (OFDM) signals with large envelope fluctuations are prone to be affected by power amplifier (PA), resulting in degradation of system performance. Peak-to-average power ratio (PAPR) and cubic metric (CM) are commonly used as the reduction criteria of envelope fluctuations of OFDM signals. However, our analysis shows that minimizing the PAPR or CM does not necessarily mean the optimization of system performance, since both metrics are inadequate to quantify the distortion in nonlinear OFDM transmission. In this paper, we fully discuss the effects of PA nonlinearity on OFDM signals and propose a new metric called distortion component metric (DCM), which is closely related to the nonlinear distortion caused by the PA. We compare the system performance when several metrics are respectively used as the reduction criterion for the selective mapping scheme. It is shown that in the presence of memoryless or memory PA, the usage of DCM can provide better inband and out-of-band performance than PAPR and CM.


Author(s):  
PRITANJALI KUMARI ◽  
US TRIAR

Orthogonal Frequency Division Multiplexing (OFDM), widely used in digital wireless communication, has a major drawback of high Peak to Average Power Ratio (PAPR). A reduced complexity partial transmit sequence (PTS) scheme has been proposed to solve high peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed PTS scheme, a function is generated by summing the power of time domain samples at time ‘n’ in each sub blocks, known as “Hn”.Only those samples, having Hn greater than or equal to a preset threshold value (αT) are used for peak power calculation during the process of selecting a candidate signal with the lowest PAPR for transmission. As compared to conventional PTS scheme, the proposed scheme achieves almost the same PAPR reduction performance with much lower computational complexity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Qinbiao Yang ◽  
Zulin Wang ◽  
Qin Huang

Orthogonal frequency division multiplexing (OFDM) usually suffers high peak-to-average power ratio (PAPR). As shown in this paper, PAPR becomes even severe for sparse source due to many identical nonzero frequency OFDM symbols. Thus, this paper introduces compressive coded modulation (CCM) in order to restrain PAPR by reducing identical nonzero frequency symbols for sparse source. As a result, the proposed CCM-based OFDM system, together with iterative clipping and filtering, can efficiently restrain the high PAPR for sparse source. Simulation results show that it outperforms about 4 dB over the traditional OFDM system when source sparsity is 0.1.


Author(s):  
Vandana Pundir ◽  
Anwar Ahmad

Orthogonal Frequency Division Multiplexing is a multi-carrier modulation technique which provides numerous advantages like high spectral efficiency, minimal interference, low multipath fading, etc. But Peak-to-average Power Ratio is a severe challenge in using such multiplexing technique as it introduces distortions in nonlinear devices. Various Peak-to-average Power Ratio reduction techniques have been investigated in the literature to improve the performance of Orthogonal Frequency Division Multiplexing systems. But, each of them suffers either from high complexity or degraded bit error rate or less spectral efficiency. For reducing Peak-to-average Power Ratio more effectively, a hybrid combination of Partial Transmit Sequence with Selective Mapping is detected to show better performance. In this paper, we have combined Goppa coding technique with this hybrid Selective Mapping and Partial Transmit Sequence for further improving the performance. Along with Peak-to-average Power Ratio reduction capability, the proposed technique also has inherent error control mechanism due to the use of coding. Based on the simulation results, we have concluded that the proposed technique provides good amount of Peak-to-average Power Ratio reduction than conventional techniques. The proposed technique is analyzed for different number of Orthogonal Frequency Division Multiplexing symbol candidates for Selective Mapping and different number of block divisions for Partial Transmit Sequence. Further, this technique is simulated for different number of subcarriers and modulation order and the simulation results are compared with each other. The proposed technique also shows better Bit error rate values for high Signal-to-Noise ratio.


Author(s):  
Manju Sangar ◽  
Professor Brijendra Mishra ◽  
Professor Bhupendra Verma

In last few decades the demand for multimedia data services has grown up fastly. One of the most promising multicarrier system, Orthogonal Frequency Division Multiplexing (OFDM) allow large number of capacity the number of subcarriers, high data rates and ubiquitous coverage with high mobility. But OFDM is extensively affected by peak to average power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes will frequently drive high power amplifiers (HPAs) which are operate in the nonlinear region. The nonlinearity of the High Power Amplifier exhibits phase and amplitude distortions, which causes loss of orthogonality between the subcarriers; also (ICI) is introduced in the source signal. This dissertation is basically focused on PAPR reduction in OFDM system and measuring BER in different Modulation Technique. In PAPR reduction Signal companding methods have low complication, high distortion and spectral properties; however, we have limited PAPR reduction capabilities. Partial transmit sequences (PTS) and selected mapping (SLM), have also been considered for PAPR reduction. Such kind of techniques are very efficient and distortion less, Also the SLM is very good technique to the PAPR problem in single carrier system. This method has low complexity as well as it is data independent. In this paper, we are describing a combine technique of SLM and PTS to minimize the PAPR. In PTS scheme, number of sub blocks increases; the IFFT block to be performed for sub blocks also increases. Simulation results have shown that the reductions of PAPR of proposed scheme is more than PTS and SLM methods as well as the difficulty reduced considerably.


Sign in / Sign up

Export Citation Format

Share Document